
86Box

86Box Project

Dec 27, 2023

USING 86BOX

1 Community 3

2 Contents 5

i

ii

86Box

86Box is an IBM PC system emulator that specializes in running old operating systems and software designed for IBM
PC systems and compatibles from 1981 through fairly recent system designs based on the PCI bus.

86Box is released under the GNU General Public License, version 2 or later. For more information, see the COPYING
file.

The project maintainer is OBattler.

If you need a configuration manager for 86Box, use the 86Box Manager, our officially endorsed 86Box configuration
manager, developed by Overdoze (daviunic). Please note that 86Box Manager is currently Windows-exclusive.

USING 86BOX 1

https://86box.net
https://github.com/86Box/86Box/blob/master/COPYING
https://github.com/86Box/86Box/blob/master/COPYING
https://github.com/OBattler
https://github.com/86Box/86BoxManager
https://github.com/daviunic

86Box

2 USING 86BOX

CHAPTER

ONE

COMMUNITY

We operate an IRC channel and a Discord server for discussing anything related to retro computing and, of course,
86Box. We look forward to hearing from you!

Additionally, subscribe to our YouTube channel for content such as installation videos, and follow us on Twitter for
occasional updates and fun facts.
For more links, visit our official website.

3

https://kiwiirc.com/client/irc.ringoflightning.net/?nick=86box|?#softhistory
https://discord.86box.net
https://youtube.com/86box
https://twitter.com/86BoxEmulator
https://86box.net

86Box

4 Chapter 1. Community

CHAPTER

TWO

CONTENTS

2.1 Getting started

Here are the basic steps to help you get started with 86Box. The user interface has been designed to resemble Virtual
PC, VirtualBox and other virtualizers, so if you used those programs before, this should all look familiar to you.

Step 1: Get the ROM set

86Box relies on a set of ROM dumps gathered from physical hardware to emulate it. This includes the system BIOS,
as well as any option ROMs used by expansion cards. If you try to start 86Box without one, you’ll receive an error and
86Box will close. You need to download the ROM set from here, and extract it into one of the supported locations.

Step 2: Meet the main window

Once you got the romset in the right place, you can start 86Box.exe. The main window has three important areas:

• The menu bar at the top, where most controls and options are located. See Menu bar for more information.

• The display area in the middle, which is where the display output from the emulated machine will be rendered.

• The status bar at the bottom, containing icons for quickly accessing the configured peripheral devices. See
Status bar for more information.

Step 3: Configure the hardware

When you start an emulated machine, you probably want to configure it with the hardware options you want. This is
much like putting together the hardware components to build a PC. To do this, go to the Tools menu and select Settings.
This will bring up the Settings window, which has many options to choose from, split into a handful of categories.

Step 4: Configure the BIOS

Once you’ve selected the hardware components you wish to emulate, you need to make sure they’re properly configured.
This is done through the system BIOS, the same way it’s done on a real computer. The specifics of this will of course
differ from one machine to another, but generally speaking, you need to know how to enter the BIOS, which options to
change, and which options to leave alone.

5

https://github.com/86Box/roms/releases/latest

86Box

Step 5: Mount some images

Now that you’ve configured everything, you’re ready to run some software in your emulated machine. Maybe you want
to install an operating system or play a booter game. In any case, you’ll have to mount some virtual media to get going.
You can do this with the icons in the status bar. Icons representing removable media appear semi-transparent when
their associated drive is empty, and fully opaque when media is inserted.

When you want to eject virtual media, click on the particular icon again and select Eject (for floppy and ZIP disks) or
Empty (for CD-ROMs). The icon becomes semi-transparent again.

Step 6: Mouse and keyboard interaction

Now you’re ready to do some stuff inside the emulated machine. Keyboard input is redirected there automatically
whenever the emulator window has focus. All key presses and combinations will be redirected to the emulated machine.

Mouse input has to be manually “captured” and “released”. To capture the mouse in the emulated mahine, simply click
inside the renderer area. Your host mouse cursor will disappear and your mouse movement and clicks will be redirected
into the emulated machine. Now you can use the mouse inside the emulated machine - if the software and hardware
configuration supports it, of course.

To release the mouse, press F8 + F12 simultaneously (on Windows) or Ctrl + End (on Linux). You can also use the
middle mouse button for this if the emulated mouse only has two buttons.

Step 7: What now?

If you made it this far, you got the basics of using 86Box, but there’s more features and options to explore. For example,
you can try out 86Box Manager for easier management of multiple emulated machines. You can see what’s under the
View menu, or look at some of the more obscure options in the Settings window.

You may eventually encounter the need to get files into your machine. Please see this section for information on disk
image formats and this section on creating and using disk images.

Keep in mind that because 86Box is constantly in development, various problems will come and go. If you think
something’s not working the way it should, consider submitting an issue on GitHub or joining official support channels
on Discord or IRC.

Have fun!

2.2 Frequently asked questions

2.2.1 What is the difference between 86Box and applications like VirtualBox or Vir-
tual PC?

VirtualBox, Virtual PC and similar applications are hypervisors. For the most part, they execute code running in the
virtual machine as is, and only step in whenever it is required to enforce the separation of a virtual machine from the
rest of the system. This also means that the virtual machine sees the same CPU as the host system.

They also mostly implement peripherals that are custom designed to let the guest take full potential of the virtualizer
as long as appropriate drivers, which are distributed with the provided additions, are installed. This is great for modern
operating systems and software that is not designed for a specific hardware target, but rather an abstraction interface such
as DirectX; however, running older applications and games will often lead to a suboptimal experience, as hypervisors
don’t tend to be designed with this usecase in mind.

6 Chapter 2. Contents

https://github.com/86Box/86BoxManager
https://github.com/86Box/86Box/issues

86Box

On the other hand, 86Box is a system emulator. It implements a whole system in software, which includes the CPU,
chipset and additional cards, if any. Furthermore, it interprets every single instruction running in the virtual machine,
and while that comes with the obvious tradeoff of emulation being more CPU intensive than virtualization, it also
makes it possible to simulate authentic behavior of the original hardware, including its speed. This in turn allows
running countless games and demos that wouldn’t have run in a hypervisor before, as they simply run too fast or fail to
make use of various hardware quirks that don’t exist in modern processors.

In addition, the large variety of peripherals emulated by 86Box also makes it possible to use existing software, games
and drivers that had been specifically designed for such peripherals. However, this obviously means that the emulator
is also stuck with the limitations of the original hardware, and therefore it is not possible to offer advanced features
such as mouse pointer integration.

2.2.2 What is the difference between 86Box and QEMU?

86Box and QEMU are both emulators, as they can both implement a whole computer system in software. However,
QEMU is primarily designed to performantly translate between different instruction sets by implementing a generic
CPU, and therefore doesn’t try to emulate all the various quirks of the real hardware like 86Box.

Similarly to hypervisors, QEMU also implements certain fictional peripherals that are designed to reduce the emulation
overhead. Again, this all is great for modern software that is not designed for a specific hardware target, but not so
great for older software.

A common point of confusion is also QEMU’s option to pick a specific CPU to be emulated, similarly to 86Box. This
however only has the effect of changing the reported CPU identification (CPUID instruction in x86) and does not impact
the behavior of the emulation in any way.

2.2.3 What is the difference between 86Box and PCem?

86Box and PCem are both PC system emulators. In fact, 86Box originally started out as a fork of PCem in 2016.
However, the codebases of both emulators have since then diverted by a lot. Because of this, features and bugs found
in one emulator do not necessarily have to be present in the other.

In general, 86Box focuses more on the accuracy of emulation, especially for older 8088/8086 based systems. This
makes it more compatible with older applications, games and demos that make use of clever hardware tricks to make
do with the limited computing power of the time.

Meanwhile, PCem often takes various shortcuts to improve performance at the cost of accuracy, which does end up
limiting the selection of software it can run.

2.2.4 My virtual machine does not run at 100% speed, what do I do?

If the emulation speed is consistently way under 100%, then your configuration is too demanding for your host system.
Try to pick a slower emulated CPU speed.

However, if you only experience casual drops in emulation speeds, you should not instantly worry, as the guest might
simply be doing some heavy I/O operations.

2.2. Frequently asked questions 7

86Box

2.2.5 What is the top VM configuration my system will handle?

There is no formula that would tell you this. In general, the higher the host’s IPC (instructions per clock) rating, the
higher emulated CPU speeds it can handle. However, the emulation speeds also depend on the kind of software that
runs in the virtual machine.

Therefore, the best way to optimize your virtual machine configuration is simply trial and error.

2.2.6 Are you going to add emulation of the Pentium 3 and/or newer CPUs?

In short, no. Newer CPUs are way too powerful and even the top-end systems that are currently on the market are not
nearly performant enough to be able to emulate them at usable speeds. In fact, we already had to add some low-clocked
variants of the Pentium 2 that never actually existed, just so more people could use it!

For further reading, team member RichardG wrote a blog post that goes into the details of what makes the emulation
of newer CPUs so controversial.

2.3 ROM set

86Box relies on a set of ROM dumps gathered from physical hardware to emulate it. This includes the system BIOS,
as well as any option ROMs used by expansion cards.

The ROM set is organized into several directories for each device type, each of which contains futher subdirectories
for each machine or device model or category.

Note: The expected file names of the ROM dumps and their locations within the set are hardcoded in the emulator. If
you rename them or add your own dumps with different file names, the emulator will not be able to make use of them.

2.3.1 Search path

The emulator utilizes a search path mechanism to locate ROMs. By default, the following locations are considered:

1. roms subdirectory in the VM path

2. roms subdirectory in the same directory as the emulator executable

3. Platform-specific locations

A custom location can be specified by using the -R or --rompath command line argument, which then precedes any
other considered locations.

Windows

The following locations are searched on Windows:

1. %LOCALAPPDATA%\86Box\roms

2. %PROGRAMDATA%\86Box\roms

8 Chapter 2. Contents

https://86box.net/2022/03/21/why-not-p3

86Box

Unix

86Box honors the XDG base directory specification on Linux and other Unix-compatible platforms. The following
locations are searched:

1. $XDG_DATA_HOME/86Box/roms

2. 86Box/roms subdirectory in each path listed in $XDG_DATA_DIRS

This usually resolves to ~/.local/share/86Box/roms, /usr/local/share/86Box/roms and /usr/share/
86Box/roms (in order).

macOS

The following locations are searched on macOS:

1. ~/Library/Application Support/net.86box.86Box/roms

2. /Library/Application Support/net.86box.86Box/roms

Tip: The list of all paths searched when loading ROMs is printed to the log and standard output when 86Box starts.

2.4 Menu bar

The menu bar located at the top of the 86Box window provides controls for the emulated machine as a whole, its display,
and the 86Box user interface.

Important: On macOS, the Exit (Quit), Preferences and About 86Box options are found in the 86Box application
menu instead of the locations outlined here.

2.4.1 Action

• Auto-pause on focus loss: automatically pause emulation while the 86Box window is not focused.

• Keyboard requires capture: require the mouse to be captured for keypresses to be forwarded to the emulated
machine. Enabling this option allows the use of keyboard combinations (such as Alt+Tab) on the host system
while the 86Box window is focused.

• Right CTRL is left ALT: let the right Ctrl key act as a left Alt key, to simulate some special keyboards where
the Alt key is located on the right side of the space bar.

• Pause: pause emulation of the machine. Uncheck this option to resume emulation.

• Hard Reset: force a reset of the emulated machine. Requires confirmation, which can be disabled by checking
the Don’t show this message again box.

• Ctrl+Alt+Del: send a Ctrl+Alt+Del key combination to the emulated machine. You can alternatively press
Ctrl+F12 to send that combination.

• Ctrl+Alt+Esc: send a Ctrl+Alt+Esc key combination to the emulated machine.

• Exit: quit 86Box. Requires confirmation, which can be disabled by checking the Don’t show this message again
box.

2.4. Menu bar 9

86Box

2.4.2 View

• Hide toolbar: hides the toolbar below the menu bar.

• Hide status bar: hides the status bar at the bottom of the window.

• Show non-primary monitors: shows or hides the secondary display window if a secondary video card is con-
figured.

• Resizeable window: allow the 86Box window to be freely resized. Unchecking this option will also return the
window to its normal size.

• Remember size & position: automatically save the size and position of the 86Box window to the emulated
machine’s configuration file.

• Renderer: select a graphical renderer for the emulated display.

– Qt (Software) is recommended in most cases.

– Qt (OpenGL), Vulkan and Direct3D 9 are known to perform better on some host systems. Try these if
your system is struggling to maintain 100% emulation speed. Vulkan may not be available if the host GPU
is not Vulkan-capable, and Direct3D 9 is only available on Windows hosts.

– OpenGL (3.0 Core) allows for shader effects to be applied to the emulated display, however, it is not
compatible with older integrated GPUs.

• Renderer options: open a window to configure the OpenGL (3.0 Core) renderer. This option will be available
if that renderer is selected.

– Target framerate: select the framerate at which the emulated display is updated. Synchronize with video
automatically uses the emulated display’s current refresh rate.

– VSync: enable vertical sync. Recommended if tearing artifacts are observed.

– Browse: load a .glsl shader file to apply to the emulated display.

– Remove: disable the currently-loaded shader.

Note:

• Many shaders are available for simulating CRT displays, VHS tapes and other aesthetics; the RetroArch glsl-
shaders repository is a good place to start.

• Shaders that take advantage of multipass and previous frames are not supported.

• .cg and .cgp shaders are not supported either, as these formats are long deprecated.

• Specify dimensions: open a window where an exact size (in pixels) for the emulated display can be set. If
checked, the Lock to this size box prevents changes in the emulated display’s resolution from overriding the
specified size.

• Force 4:3 display ratio: stretch the emulated display to a 4:3 aspect ratio, independently of the emulated ma-
chine’s screen resolution.

• Window scale factor: scale the emulated display to half (0.5x), normal (1x), 50% larger (1.5x), double (2x) or
larger (up to 8x) sizes.

• Filter method: select the filtering method (Nearest or Linear) to be used when scaling the emulated display.

• HiDPI scaling: automatically scale the emulated display to real size if your host system has a HiDPI display.
This option can be used alongside Window scale factor above.

10 Chapter 2. Contents

https://github.com/libretro/glsl-shaders
https://github.com/libretro/glsl-shaders

86Box

Note: If HiDPI scaling is disabled on a host with a HiDPI display, the emulated display’s size may be off by one pixel
due to an integer scaling limitation.

• Fullscreen: enter full screen mode. Press Ctrl+Alt+Page Down to go back to windowed mode. You can also
enter full screen mode by pressing Ctrl+Alt+Page Up.

• Fullscreen stretch mode: select the picture mode to use when in full screen mode.

– Full screen stretch: stretch the emulated display to completely fill the host display.

– 4:3: stretch the emulated display to a 4:3 aspect ratio, then scale it to fit the host display.

– Square pixels (keep ratio): scale the emulated display to fit the host display, without changing the aspect
ratio.

– Integer scale: scale the emulated display to the largest integer scale factor to fit the host display. This
provides the highest possible picture quality, at the cost of black bars if the host display’s resolution is not
divisible by the emulated display’s resolution.

– 4:3 integer scale: stretch the emulated display to a 4:3 aspect ratio, then scale it to the largest integer scale
factor to fit the host display.

• Apply fullscreen stretch mode when maximized: apply the picture mode selected above in windowed mode if
Resizeable window is enabled and the window is maximized.

• EGA/(S)VGA settings: contains display settings specific to EGA, VGA and Super VGA video hardware.

– Inverted VGA monitor: emulate a VGA monitor with inverted colors.

– VGA screen type: select the VGA monitor type to emulate. Color, Grayscale, Amber, Green and White
phosphor monitors can be selected.

– Grayscale conversion type: select the color-to-grayscale conversion profile (BT.601, BT.709 or Average)
to use when a grayscale monitor is selected.

• CGA/PCjr/Tandy/EGA/(S)VGA overscan: add an overscan border around the display. This border is only
added when emulating the specified video hardware types.

• Change contrast for monochrome display: optimize the contrast of monochrome CGA monitors for 4-color
operation.

2.4.3 Media

This menu lists all storage drives and network cards attached to the emulated machine, and provides the same controls
that are accessible by clicking the respective device’s icon on the status bar.

The Clear image history option empties the list of recently-loaded image files or folders on all storage drives.

2.4. Menu bar 11

86Box

2.4.4 Tools

• Settings: open the Settings window to configure the emulated machine.

• Update status bar icons: enable the activity lights on status bar icons. Unchecking this option may improve
emulation performance on low-end host systems.

• Enable Discord integration: enable Discord Rich Presence. 86Box shares the emulated machine’s name, model
and CPU with other Discord users.

Note: Integration requires the Discord desktop app, running on x86 or x64 Windows, x86_64 Linux or Intel macOS.
Discord does not provide integration support for other operating systems / architectures or the browser app. Addition-
ally, integration will not be available on Windows if the included discord_game_sdk.dll file is missing from the
86Box directory.

• Take screenshot: take a screenshot of the emulated display. Screenshots are saved as .png images in the
screenshots subdirectory found in the emulated machine’s directory, which can be opened with the Open
screenshots folder option below.

• Sound gain: open the sound gain control, which is also accessible through the status bar.

• Preferences: open the Preferences window, which provides the following options:

– Language: select a language for the 86Box user interface.

– Icon set: select an icon theme for the status bar and Settings window.

– Mouse sensitivity: adjust the emulated mouse’s tracking sensitivity.

– Select media images from program working directory: if checked, starts any file open/save prompts on
the emulated machine’s directory. This option is particularly useful for macOS users.

• MCA devices: open the MCA devices window, which lists the IDs and required Adapter Definition Files of all
Micro Channel devices installed on the emulated machine. This option will only be available when emulating a
Micro Channel Architecture-based machine.

• Open screenshots folder: open the host system’s file browser on the directory where screenshots of this emulated
machine are saved.

2.4.5 Help

• Documentation: open the very documentation you’re reading.

• About 86Box: show credits, license and build information about 86Box.

2.5 Toolbar

The toolbar located at the top of the 86Box window (right below the menu bar) has two purposes: it provides quick
actions for the emulated machine on its left hand side, and displays status information on its right hand side.

12 Chapter 2. Contents

https://ardent-tool.com/adapters/ADF.html

86Box

2.5.1 Pause/resume execution

Pause emulation of the machine. Press again to resume emulation.

Note: Emulation is automatically paused when the emulated machine enters ACPI sleep mode.

2.5.2 Hard reset

Force a reset of the emulated machine. Requires confirmation, which can be disabled by checking the Don’t show this
message again box.

2.5.3 ACPI shutdown

Send a power button press to the emulated machine. Only available on machines with ACPI soft power off support.

2.5.4 Press Ctrl+Alt+Del/Ctrl+Alt+Esc

Send a Ctrl+Alt+Del (left-most icon) or Ctrl+Alt+Esc (right-most icon) key combination to the emulated machine.
You can alternatively press Ctrl+F12 to send a Ctrl+Alt+Del combination.

2.5.5 Settings

Open the Settings window to configure the emulated machine.

2.5.6 Status area

The right hand side of the toolbar displays status information, such as:

• Emulation speed in percentage. If this number stays consistently below 100%, your host system is not keeping
up with emulating the configured hardware.

• Mouse state (captured or released) if a mouse is enabled.

• Pause indicator if emulation is paused.

2.5. Toolbar 13

86Box

2.6 Status bar

The status bar located at the bottom of the 86Box window provides icons related to devices attached to the emulated
machine. Move your mouse cursor over an icon to see what device it represents. Most icons can be clicked on to
access options related to their respective devices, which are listed below, and image files can be dropped on the icons
for removable media devices such as floppy and CD-ROM drives. Additionally, a green indicator light will appear on
an icon when its device is in use, unless Update status bar icons is disabled.

2.6.1 Cassette deck

A cassette tape icon will appear if IBM cassette emulation is enabled.

• New image: create a new cassette tape image file.

• Existing image: insert a cassette tape image file into the deck. Dragging and dropping an image file on the icon
will also load it.

• Existing image (Write-protected): insert a cassette tape image file into the deck as a read-only tape.

• Record: start recording data to the cassette tape. Not available if the tape is read-only.

• Play: start playing the cassette tape.

• Rewind to the beginning: rewind the cassette tape to its beginning.

• Fast forward to the end: fast forward the cassette tape to its end.

• Eject: remove the currently-inserted cassette tape from the deck.

2.6.2 PCjr cartridges

Two cartridge icons will appear if the IBM PCjr is being emulated. Each icon corresponds to a cartridge slot on the
PCjr’s front panel.

• Image: insert a cartridge image file into this slot. Inserting a cartridge will reset the PCjr. Dragging and dropping
an image file on the icon will also load it.

• Eject: remove the currently-inserted cartridge from this slot.

2.6.3 Floppy drives

A 3.5” or 5.25” floppy icon will appear for each configured floppy drive.

• New image: create a new disk image file. Opens the New Image window, which lets you select the image size
and where to save the file.

• Existing image: insert a disk image file into this drive. Dragging and dropping an image file on the icon will
also load it.

• Existing image (Write-protected): insert a disk image file into this drive as a read-only disk.

• A history of the last few images that were loaded into this drive. Click on an entry to load it back.

• Export to 86F: convert the currently-inserted disk image file to 86Box’s 86F surface image format. You will be
asked where to save the converted file.

14 Chapter 2. Contents

86Box

• Eject: remove the currently-inserted disk from this drive.

2.6.4 CD-ROM drives

A CD icon will appear for each configured CD-ROM drive.

• Mute: mute any CD audio played through this drive’s analog output. CD audio is unmuted by default on the
first configured CD-ROM drive.

• Image: insert a CD-ROM or DVD-ROM disc image file into this drive. Dragging and dropping an image file on
the icon will also load it.

• Folder: insert a virtual CD-ROM or DVD-ROM with the contents of a host folder into this drive. Dragging and
dropping a folder on the icon will also load it.

• A history of the last few images or folders that were loaded into this drive. Click on an entry to load it back.

• Eject: remove any disc inserted into this drive.

2.6.5 ZIP and MO drives

A ZIP or MO icon will appear for each configured additional removable storage drive.

• New image: create a new disk image file. Opens the New Image window, which lets you select the image size
and where to save the file.

• Existing image: insert a disk image file into this drive. Dragging and dropping an image file on the icon will
also load it.

• Existing image (Write-protected): insert a disk image file into this drive as a read-only disk.

• Eject: remove the currently-inserted disk from this drive.

• Reload previous image: reinsert the last disk image file selected through the Existing image options.

2.6.6 Hard disks

A hard disk icon will appear for each configured hard disk bus. For example, if you have both IDE and SCSI hard disks
configured, two hard disk icons will appear: one representing all IDE disks, and another one representing all SCSI
disks. No options are available.

2.6.7 Network

A network icon will appear for each configured network card.

• Connected: connect this card to its network. Network cards with link state detection support will report a
disconnected cable if this option is unchecked.

2.6. Status bar 15

86Box

2.6.8 Sound

This icon is always present. Double-clicking it opens a sound gain control, which allows you to increase the loudness
of all audio produced by the emulated machine’s PC speaker, sound cards and other sound hardware.

Note: The gain control does not apply to MIDI music sent to a software synthesizer through the System MIDI device,
as these synthesizers are external to 86Box.

2.6.9 Additional information area

This area, located to the right of the icons described above, contains additional information which may be provided by
components such as the ISABugger and POST card.

Monitor sleep mode

The Monitor in sleep mode message will be displayed if the emulated monitor has been put into DPMS sleep mode by
the operating system. Pressing a key or moving the mouse is often enough to wake the monitor up.

ISABugger

The ISABugger’s hexadecimal displays and LED banks are displayed here. See ISABugger for more information.

POST card

The leftmost hexadecimal value is the most recent POST code reported, while the rightmost value is the second most
recent code, like on a real dual-display POST card. A value of -- indicates that no POST code has been reported yet.

Note: The additional information area can only be used by one component at a time. If both the ISABugger and
the POST card are enabled simultaneously, the POST card takes over whenever a POST code is reported, and the
ISABugger takes over whenever one of its registers is written to. The Monitor in sleep mode message is high-priority
and will override all other components.

2.7 Settings

The Settings window allows you to configure the emulated machine.

If any changes were made to the settings, you will be asked whether or not you want to save the changes upon pressing
OK or closing the window. Saving changes will hard reset the emulated machine. Press Cancel to immediately discard
all changes.

16 Chapter 2. Contents

86Box

2.7.1 Machine

The Machine page contains settings related to the emulated machine as a whole, such as the machine type, CPU type
and amount of memory.

Machine type / Machine

Machine/motherboard model to emulate. The Machine box lists all available models for the machine class selected on
the Machine type box.

The Configure button opens a new window with settings specific to the machine, such as BIOS type selection.

Note: 86Box 4.0.1: Settings for the machine’s onboard devices have been moved to the Configure buttons at the
devices’ respective locations; for instance, configuring the amount of installed video memory for an onboard video chip
is now done through the Configure button next to the Display page’s Video box when the Internal option is selected
there.

CPU type / Speed

Main processor to emulate. The Speed box lists all available speed grades for the processor family selected on the CPU
type box. These boxes only list processor types and speed grades supported by the machine selected above.

FPU

Math co-processor to emulate. This box is not available if the processor selected above has an integrated co-processor
or lacks support for an external one.

Wait states

Number of memory wait states to use on a 286- or 386-class processor. This box is not available if any other processor
family is selected above.

PIT mode

Programmable Interval Timer emulation mode. Auto should cover most use cases, automatically selecting Fast mode
on 486-class and newer processors or Slow mode on older ones. A limited set of timing-sensitive applications require
Slow mode, which is slower but more accurate.

2.7. Settings 17

86Box

Memory

Amount of RAM to give the emulated machine. The minimum and maximum allowed amounts of RAM will vary
depending on the machine selected above.

Dynamic Recompiler

Enable the dynamic recompiler, which provides faster but less accurate CPU emulation. The recompiler is available as
an option for 486-class processors, and is mandatory starting with the Pentium.

Softfloat FPU

Enable a slower but more accurate math co-processor emulation, for running a limited set of operating systems and
applications which demand full 80-bit precision from the floating point unit.

Time synchronization

Automatically copy your host system’s date and time over to the emulated machine’s hardware real-time clock. Syn-
chronization is performed every time the emulated operating system reads the hardware clock to calibrate its own
internal clock, which usually happens once on every boot.

• Disabled: do not perform time synchronization. The emulated machine’s date and time can be set through its
operating system or BIOS setup utility. Time only ticks while the emulated machine is running.

• Enabled (local time): synchronize the time in your host system’s configured timezone. Use this option when
emulating an operating system which stores local time in the hardware clock, such as DOS or Windows.

• Enabled (UTC): synchronize the time in Coordinated Universal Time (UTC). Use this option when emulating
an operating system which stores UTC time in the hardware clock, such as Linux.

2.7.2 Display

The Display page contains settings related to the emulated machine’s 2D and 3D video cards.

Video

Video card to emulate. This box only lists cards supported by the machine’s expansion buses. On machines equipped
with an onboard video chip, the Internal option enables the onboard video.

The Configure button opens a new window with settings specific to the selected video card, such as the amount of video
memory.

18 Chapter 2. Contents

86Box

Video #2

Optional secondary video card to emulate. Only the MDA, Hercules, Hercules Plus and a limited set of PCI VGA
cards are currently supported as secondary options. The secondary card’s video output is displayed on a separate
window.

As with the primary card above, the Configure button can be used to configure the selected card.

Voodoo Graphics

Emulate a 3dfx Voodoo add-on 3D accelerator, connected to both the PCI bus and the video card selected above.

Note: The Voodoo Banshee and Voodoo 3 are independent video cards, which are not found here; they must be
selected on the Video box above, and this Voodoo Graphics option must be disabled. For these cards, the Configure
button next to the Video box provides similar settings to the ones listed below.

The Configure button provides the following settings:

• Voodoo type: type of Voodoo card to emulate.

– Voodoo Graphics: the original Voodoo model, with a single Texture Mapping Unit operating at 50 MHz.

– Obsidian SB50 + Amethyst: a variant of the Voodoo Graphics, with two Texture Mapping Units operating
at 50 MHz.

– Voodoo 2: the second Voodoo model, with two Texture Mapping Units operating at 90 MHz, as well as
SLI support.

• Framebuffer memory size / Texture memory size: amount of video memory for the Frame Buffer Interface
and Texture Mapping Unit(s), respectively.

• Bilinear filtering: apply bilinear filtering to smooth out textures displayed on screen.

• Screen Filter: apply a filter to make the screen picture resemble the DAC (digital-to-analog converter) output
of a real Voodoo card.

• Render threads: split the workloads of each Voodoo card into different CPU threads for faster emulation. The
recommended amount of render threads depends on your host system’s CPU core count, and whether or not
Voodoo 2 SLI is enabled:

Host cores Recommended render threads
Single card Voodoo 2 SLI

2 1 1
4 2 1
6 or 8 4 2
10 or more 4 4

• SLI: add a second Voodoo 2 card to the system, connected to the first one through a Scan Line Interleave (SLI)
interface.

• Recompiler: enable the Voodoo recompiler for faster emulation.

2.7. Settings 19

86Box

8514/A / XGA

Emulate an IBM 8514/A or XGA add-on graphics accelerator. Both the original IBM cards for the MCA bus and
generic clone cards for the ISA bus are available; the correct card is automatically selected based on the machine’s
supported expansion buses.

The Configure button next to the XGA opens a new window where the card type (XGA-1 or XGA-2) and initial BIOS
address can be configured.

Note: Pairing the 8514/A and XGA with each other or with video cards from ATI or S3 may result in compatibility
issues, as each card implements a set of 8514/A features.

2.7.3 Input devices

The Input devices page contains settings related to the emulated machine’s mouse, joysticks and other input devices.

Mouse

Emulate a pointing device. The following types are supported:

• Bus mouse: ISA expansion card with a mouse interface. The I/O port and IRQ used by the card are configurable.

• Serial mouse: connected to the serial port of your choosing.

• PS/2 mouse: connected to the PS/2 port. Only available on machines with a PS/2 mouse port.

The Configure button opens a new window with settings specific to the selected device type, such as the number of
buttons, or the serial port for a serial mouse or tablet.

Note: Serial pointing devices require the configured serial port to be enabled on the Ports tab.

Joystick

Emulate one or more game port controller(s). The following controller types are supported:

• None: no controller connected.

• 2-axis, 2-button joystick(s): up to two controllers, each with two buttons and an analog stick.

• 2-axis, 4-button joystick: single controller with four buttons and an analog stick.

• 3-axis, 2-button joystick: single controller with two buttons and an analog stick and a throttle.

• 3-axis, 4-button joystick: single controller with four buttons and an analog stick and a throttle.

• 2-axis, 6-button joystick: single controller with four regular buttons, two additional buttons mapped to the third
and fourth axes, and an analog stick.

• 2-axis, 8-button joystick: single controller with four regular buttons, four additional buttons mapped to the third
and fourth axes, and an analog stick.

• 4-axis 4-button joystick: single controller with four buttons and two analog sticks (or four axes).

• CH Flightstick Pro: flight controller with four buttons, three axes and a POV hat.

20 Chapter 2. Contents

86Box

• Microsoft SideWinder Pad: up to four controllers, each with 10 buttons and a directional pad. Not compatible
with standard game port joysticks; requires a driver in the emulated machine.

• Thrustmaster Flight Control System: flight controller with four buttons, two axes and a POV hat.

Note: A generic game port card is emulated if the machine has no game ports (either built-in or as part of a Plug and
Play or PCI sound card) to accomodate the selected controller. This generic card uses the default I/O ports 200-207h,
which can be changed through ISA Plug and Play. On IBM PCjr and PS/1 machines, the generic card uses port 201h
only and has no Plug and Play capability.

Joystick 1-4. . .

Configure the mappings for each emulated game port controller. The Device box lists all game controllers connected
to the host, while the other boxes allow you to map each axis or button of the emulated controller to the real controller.

If you’re not sure as to what axis or button numbers map to which sticks and buttons on the real controller, use the Test
feature of Windows’ Game Controllers control panel (joy.cpl). Keep in mind 86Box’s button numbers start with 0,
whereas the control panel’s numbers start with 1.

Note: XInput controllers are accessed through their DInput emulation mode at the moment.

2.7.4 Sound

The Sound page contains settings related to the emulated machine’s audio hardware.

Parallel port sound devices such as the Disney Sound Source and Covox Speech Thing are not present on this page;
they can be configured through the Ports page.

Sound card #1-#4

Sound cards to emulate. Up to 4 different sound cards are supported. Only cards supported by the machine’s expansion
buses will be listed. On machines equipped with an onboard sound chip, the Internal option for sound card #1 enables
the onboard sound.

The Configure button opens a new window with settings specific to the selected sound card, such as the I/O ports, IRQ
and DMA channels for ISA cards.

Emulation for the Yamaha OPL series of synthesizers (used by many of the emulated cards) is provided by a modified
Nuked OPL3 or ymfm library, per the selection below.

Note: The Innovation SSI-2001, CMS / Game Blaster and Gravis Ultrasound are now selectable here, replacing
the previous separate options for each.

2.7. Settings 21

https://github.com/nukeykt/Nuked-OPL3
https://github.com/aaronsgiles/ymfm

86Box

MIDI Out Device

Device to output MIDI music to, for sound cards equipped with an external MIDI output.

• None: don’t output MIDI music.

• FluidSynth: a software soundfont synthesizer. Selecting a soundfont file is required; there will be no synthesizer
output if no soundfont is configured.

• Roland MT-32/CM-32L Emulation: emulate a Roland synthesizer module. Emulation is provided by the Munt
library.

• System MIDI: output to a MIDI device on the host system, such as the Windows software synthesizer or a USB
MIDI adapter.

The Configure button opens a new window with settings specific to the selected output device, such as the soundfont
to use for FluidSynth and the host MIDI device to use for System MIDI.

MIDI In Device

Device to receive MIDI music from, for sound cards equipped with an external MIDI input.

• None: don’t receive MIDI music.

• System MIDI: receive from a MIDI device on the host system, such as a USB MIDI adapter.

The Configure button opens a new window with settings specific to the selected input device, such as the host MIDI
device to use for System MIDI.

Standalone MPU-401

Emulate a standalone Roland MIDI Processing Unit ISA card, which allows for MIDI input and output without a
MPU-401-equipped sound card, and for running the few applications which require intelligent mode capability.

The I/O port and IRQ can be configured through the Configure button.

Use FLOAT32 sound

Use the 32-bit floating point (instead of 16-bit integer) data type for audio output, which is less prone to clipping but
may not work at all on some host systems. Try disabling this if you’re getting no audio output from 86Box at all.

FM synth driver

Yamaha OPL2/3 emulation back-end to use. Nuked is the default, while YMFM may improve emulation performance
at the cost of accuracy.

Note: YMFM is always used for OPL4 emulation on sound cards equipped with that synthesizer.

22 Chapter 2. Contents

http://munt.sourceforge.net

86Box

2.7.5 Network

The Network page contains settings related to the emulated machine’s network connectivity.

Network Card #1-#4

Network interface cards to emulate. Up to 4 independent network cards are supported.

Mode

Network emulation mode to use on this card. See Networking for more information on these.

• Null Driver: emulate an empty network. All packets are dropped.

• PCap: connects directly to a host network adapter. Similar to the Bridge mode on other emulators and virtual-
izers.

• SLiRP: creates a private network with a virtual router. Similar to the NAT mode on other emulators and virtu-
alizers.

• VDE: attaches to a virtual switch created by VDE. Only available on Linux and macOS hosts.

Interface

Host network adapter to use for PCap mode on this card. If no adapters appear on this list, make sure that:

• A WinPcap-compatible driver is installed;

• The installed driver is compatible with your version of Windows;

• At least one compatible (wired) network adapter is present.

Adapter

Network card to emulate. Only cards supported by the machine’s expansion buses will be listed.

The Configure button opens a new window with settings specific to the selected network card, such as the I/O port and
IRQ for ISA cards.

The [LPT] Parallel Port Internet Protocol network adapter requires a PLIP Network device to be attached to a
parallel port.

VDE Socket

The socket name specified when creating the VDE virtual switch. Only used in VDE mode.

See the VDE setup guide for more information.

2.7. Settings 23

86Box

2.7.6 Ports (COM & LPT)

The Ports (COM & LPT) page contains settings related to the emulated machine’s I/O ports.

LPT1-4 Device

Emulated device to connect to the given parallel (LPT) port.

• None: no device connected.

• Disney Sound Source: sound device with a resistor ladder DAC (digital-to-analog converter) and FIFO, sup-
ported by many games.

• LPT DAC / Covox Speech Thing: sound device with a simple resistor ladder DAC, supported by many games
(through compatibility with the Disney Sound Source above), demos and trackers.

• Stereo LPT DAC: stereo version of the LPT DAC, using the Strobe pin to select the active output channel.

• Generic Text Printer: simple printer capable of outputting text only.

– Printed documents are saved as .txt files in the printer subdirectory found in the emulated machine’s
directory.

• Generic ESC/P Dot-Matrix: EPSON ESC/P-compatible printer.

– Printed pages are saved as .png files in the printer subdirectory found in the emulated machine’s directory.

– Use the EPSON LQ-2500 printer driver for best results.

• Generic PostScript Printer: PostScript-compatible printer with PDF output.

– Printed documents are saved as .ps files in the printer subdirectory found in the emulated machine’s
directory. These files are automatically converted to .pdf once printing is completed.

– The original .ps files may remain in the directory if PDF conversion fails, or (on Windows hosts) if the
included gsdll32.dll or gsdll64.dll file is missing from the 86Box directory.

– Use the generic PostScript printer driver provided by your operating system.

– Windows 95 and newer do not have a generic PostScript driver; use the Apple LaserWriter IIf driver for
grayscale, or the Apple Color LW 12/660 PS driver for color.

• PLIP Network: A Parallel Line Internet Protocol cable connected to the emulated network.

– The emulated network adapter must also be set to [LPT] PLIP.

– PLIP is compatible with the DOS plip.com packet driver and the Linux plip driver (only with interrupts
enabled). It is not compatible with the Windows Direct Cable Connection feature or any other parallel port
networking implementations.

– PLIP works best with the SLiRP network type due to its point-to-point nature.

24 Chapter 2. Contents

https://en.wikipedia.org/wiki/Parallel_Line_Internet_Protocol

86Box

Serial port 1-4

Enable emulation of serial ports ranging from COM1 to COM4. Any ports not provided by the machine’s motherboard
will be emulated as generic ISA or VLB serial cards.

Parallel port 1-4

Enable emulation of parallel ports ranging from LPT1 to LPT4. Any ports not provided by the machine’s motherboard
will be emulated as generic ISA or VLB parallel cards.

Note: The 4th parallel port is not widely supported. It is located at I/O port 268h.

Serial port passthrough 1-4

Connect emulated serial ports to named pipes or serial ports on the host. Each instance corresponds to one of the 4
emulates serial ports.

The Configure button next to each passthrough instance opens a new window with settings specific to it, such as the
named pipe or serial port to use.

Note: Passthrough will not operate correctly if the selected serial port is taken by a serial mouse.

2.7.7 Storage controllers

The Storage controllers page contains settings related to the emulated machine’s disk drive controllers.

HD Controller

Hard disk drive controller card to emulate. This box only lists cards supported by the machine’s expansion buses.
MFM, RLL, ESDI and IDE controllers are available. Selecting an IDE controller is not required for machines with
onboard IDE.

The Configure button opens a new window with settings specific to the selected controller card, such as the BIOS option
ROM address.

FD Controller

Floppy disk drive controller card to emulate. Selecting a controller is not required, unless you wish to use one of the
add-on controllers for adding high-density 1.44M floppy support to XT machines.

The BIOS option ROM address used by the selected controller can be configured through the Settings button.

2.7. Settings 25

86Box

Tertiary / Quaternary IDE Controller

Add a third or fourth (respectively) IDE channel to the emulated machine, through a generic ISA or VLB IDE controller
card.

The IRQ used by each controller can be configured through its respective Settings button.

Note: The tertiary and quaternary controllers are not Plug and Play compliant by default; they may require manual
configuration of emulated operating systems, and may not be bootable. See Tertiary and quaternary IDE for more
information.

SCSI

SCSI host bus adapter cards to emulate. Up to 4 SCSI cards are supported. The selection boxes only list cards supported
by the machine’s expansion buses.

The Configure buttons open a new window with settings specific to the corresponding SCSI card, such as the I/O port
and IRQ for ISA cards.

Cassette

Enable IBM cassette tape emulation. Only available on machines with a cassette port. The cassette deck can be
controlled through the status bar or Media menu.

2.7.8 Hard disks

The Hard disks page contains settings related to the emulated machine’s fixed disks.

Hard disk list

All hard disks attached to the emulated system are listed, with the following information:

• Bus: storage bus the disk is attached to, as well as the disk’s bus channel or ID. These can be changed through
the Bus and Channel/ID boxes below the list.

• File: path to the disk image file.

• C/H/S: disk size in cylinders, heads and sectors, respectively.

• MB: disk size in megabytes.

26 Chapter 2. Contents

86Box

Speed profiles

The Speed box below the hard disk list controls the emulated speed profile for the selected disk. Speed emulation
takes the rotation speed, physical layout and cache size of an average period-correct drive into account. The RAM
Disk profile runs the drive as fast as the host can manage.

Note: Speed profiles are currently only available for IDE and ESDI hard disks. The RAM Disk profile is always used
on other disk types.

Adding a new disk

The New. . . button opens a new window allowing you to create an existing hard disk image file.

• File name: where to save the disk image file. See Hard disk images for a list of supported image formats.

• Cylinders/Heads/Sectors: CHS parameters for the disk image. These boxes control the Size (MB) box below.

• Size (MB): the disk image’s size in MB. This box controls the Cylinders, Heads and Sectors boxes above. There
are limits to how big a hard disk image can be; see Hard disk size limits for more information.

• Bus: storage bus to attach the disk to.

• Channel/ID: where to attach the disk on the selected storage bus.

– On IDE disks, the first number corresponds to the IDE channel, and the second number corresponds to the
Master/Slave position:

Value Channel Device
0:0 Primary Master
0:1 Primary Slave
1:0 Secondary Master
1:1 Secondary Slave
2:0 Tertiary Master
2:1 Tertiary Slave
3:0 Quaternary Master
3:1 Quaternary Slave

– On SCSI disks, the first number corresponds to the SCSI controller (starting at 0 instead of 1), and the
second number is the SCSI ID within that controller:

Value Controller SCSI ID
0:00 Controller 1 0

0:15 15
1:00 Controller 2 0

1:15 15
2:00 Controller 3 0

2:15 15
3:00 Controller 4 0

3:15 15

2.7. Settings 27

86Box

– On MFM/RLL, XTA and ESDI disks, the second number is 0 for the first drive on the controller, and 1 for
the second drive.

Note: If the disk is attached to a channel or controller that doesn’t exist, such as the tertiary IDE channel with no
tertiary IDE controller present, it will be effectively disabled.

Press the OK button to create the disk image file, or Cancel to close the window.

Adding an existing disk

The Existing. . . button opens a similar window to the New. . . button, except that it lets you select an existing disk
image file. The CHS parameters are guessed from the image’s file size, or the file header if the image is of a format
which contains a header.

After selecting the image file and checking if the parameters are correct, select the Bus and Channel/ID for the hard
disk and press OK to add it. Press Cancel to close the window.

Removing a disk

Select a disk on the list and press Remove to remove it.

2.7.9 Floppy & CD-ROM drives

The Floppy & CD-ROM drives page contains settings related to the emulated machine’s base removable storage
drives.

Floppy drives

Up to four floppy disk drives can be attached to the emulated system, although not all machines provide BIOS support
for more than two drives. The following settings apply to the selected drive:

• Type: floppy drive to emulate. Some types have special properties and should only be used in very specific
applications:

– 5.25” 1.2M PS/2 and 3.5” 1.44M PS/2: IBM PS/2 drives, which invert the polarity of the Density Select
pin.

– 5.25” 1.2M 300/360 RPM and 3.5” 1.44M 300/360 RPM: “3-mode” drives, which are capable of reading
360K 5.25” or NEC PC-98 3.5” disks if the emulated machine’s BIOS supports 3-mode operation.

– 3.5” 1.44M PC-98: NEC PC-98 drive, which is 3-mode and inverts the polarity of the Density Select pin.

• Turbo timings: run the drive mechanism as fast as possible. This decreases access times and makes some
incorrectly-dumped floppies readable, but may cause issues with some operating systems and applications.

• Check BPB: if unchecked, 86Box will ignore the DOS BIOS Parameter Block when determining the physical
media format for a floppy image on this drive. See Floppy disk detection for more details.

Note: Disabling “Check BPB” may be required in order to access UNIX/Linux installation floppies or other non-DOS
disks, as outlined on Floppy disk detection.

Floppy disk images can be inserted and removed through the status bar or Media menu.

28 Chapter 2. Contents

https://en.wikipedia.org/wiki/BIOS_parameter_block

86Box

CD-ROM drives

Up to four CD-ROM / DVD-ROM optical disc drives can be attached to the emulated system. The following settings
apply to the selected drive:

• Bus: storage bus to attach the drive to. ATAPI (IDE) and SCSI are supported.

• Channel/ID: where to attach the drive on the selected storage bus. See Adding a new disk for more information.

• Speed: maximum transfer speed for the drive. Up to 72x is supported.

• Type: CD-ROM drive model to identify as. A list of drive models to choose from is provided. Some emulated
machines have manufacturer restore discs locked to a specific drive model.

CD-ROM / DVD-ROM disc images can be inserted and removed through the status bar or Media menu.

2.7.10 Other removable devices

The Other removable devices page contains settings related to the emulated machine’s additional removable storage
drives.

MO / ZIP drives

Up to four Magneto-Optical and four Iomega ZIP disk drives can be attached to the emulated system. The following
settings apply to the selected drive:

• Bus: storage bus to attach the drive to. ATAPI (IDE) and SCSI are supported.

• Channel/ID: where to attach the drive on the selected storage bus. See Adding a new disk for more information.

• Type (MO only): drive model to identify as. A list of drive models to choose from is provided. Each model
supports different types of MO media, while the 86BOX model supports all types.

• ZIP 250 (ZIP only): enable the drive to read and write 250 MB ZIP disks.

MO / ZIP disk images can be inserted and removed through the status bar or Media menu.

2.7.11 Other peripherals

The Other peripherals page contains settings related to disk drive controllers, memory expansions and other expansion
cards.

ISA RTC

Emulate an ISA real-time clock card, for machines without an integrated real-time clock.

The I/O port and/or IRQ used by the selected controller can be configured through the Settings button.

2.7. Settings 29

86Box

ISA Memory Expansion

Add up to four ISA-based memory expansion cards, for machines which support memory expansion through the ISA
bus.

The memory start address and size for each expansion card can be configured through its respective Settings button.

ISABugger

Emulate an ISABugger debugging interface card, equipped with two hexadecimal displays and two LED banks, all
controlled by the emulated machine. See ISABugger for documentation on the card’s features.

POST card

Emulate a diagnostic POST card, which displays POST code values issued by the emulated machine’s BIOS on the
status bar. See Status bar: POST card for more information.

The POST card will automatically use the correct diagnostic I/O port for the emulated machine:

PortMachine types
0x10IBM PCjr
0x60IBM XT
0x80IBM AT, clones and the XT-based Xi 8088
0x84Early Compaq
0x190IBM PS/1 and PS/2 not based on the Micro Channel Architecture
0x680Micro Channel Architecture

Note: Some operating systems and applications use port 0x80 (which is shared with the POST card on most machines)
for other purposes. If you notice the POST code display is flickering and the emulation speed has decreased drastically,
try disabling the POST card.

2.8 Machine-specific notes

This page contains important notes related to specific machine models emulated by 86Box.

2.8.1 80286

IBM AT

• The IBM Personal Computer Diagnostics disks are not Y2K-compliant and will produce a 0152 ERROR - SYS-
TEM BOARD code if time synchronization is enabled. This code can be cleared by disabling time synchroniza-
tion, then clearing the CMOS by deleting ibmat.nvr from the nvr directory.

30 Chapter 2. Contents

86Box

2.8.2 Socket 7

ASUS P/I-P65UP5 (C-P55T2D)

• Modular motherboard, consisting of a P/I-P65UP5 baseboard and one of the following CPU cards:

– C-P55T2D: Socket 7 with Intel 430HX northbridge;

– C-P6ND: Socket 8 with Intel 440FX northbridge;

– C-PKND: Slot 1 with Intel 440FX northbridge.

• While the northbridge depends on the selected CPU card, the southbridge always remains the Intel PIIX3, as it
is located on the baseboard.

• The real CPU cards support dual CPUs. As 86Box does not emulate multiprocessing, only a single CPU will be
present.

• Due to a lack of I/O APIC emulation at the moment, 86Box will patch the MultiProcessor Specification tables
out of RAM during boot, so that operating systems will not hang or exhibit other erratic behavior due to the
missing I/O APIC.

2.8.3 Socket 8

ASUS P/I-P65UP5 (C-P6ND)

See: ASUS P/I-P65UP5 (C-P55T2D)

2.8.4 Slot 1

ASUS P/I-P65UP5 (C-PKND)

See: ASUS P/I-P65UP5 (C-P55T2D)

A-Trend ATC6310BXII

• Equipped with the obscure SMSC Victory66 southbridge instead of the regular Intel PIIX4E.

– The Victory66 has faster IDE - up to Ultra ATA/66 as opposed to the PIIX4E’s Ultra ATA/33 - and a
different USB controller.

– Drivers for Windows 95, 98, Me and 2000 are available here. Windows XP, Vista and 7 include drivers out
of the box.

2.8.5 Slot 2

Gigabyte GA-6GXU

• The BIOS display will corrupt itself during the memory test if the maximum of 2048 MB RAM is selected. This
is a visual glitch which does not otherwise negatively impact the machine.

2.8. Machine-specific notes 31

https://essentials.86box.net/drivers/chipset/SMSC%20SLC90E66%20%28Victory66%29%20%28Windows%209x%20and%202000%29.zip

86Box

Freeway FW-6400GX

• Hybrid motherboard supporting both Slot 1 and Slot 2 CPUs.

• The maximum amount of RAM is limited to 2032 MB due to a BIOS bug with 2048 MB.

• ACPI is disabled by default. It can be enabled through the ACPI Aware O/S option of the Power Management
Setup menu on the BIOS setup.

• Once enabled, ACPI does not work correctly if a non-Intel CPU is selected.

2.8.6 Socket 370

A-Trend ATC7020BXII

See: A-Trend ATC6310BXII

AEWIN AW-O671R

• Equipped with dual Winbond W83977EF Super I/O chips driving four serial (COM1-COM4) and two parallel
(LPT1-LPT2) ports.

– The I/O ports and IRQs used by all these ports can be configured in the BIOS setup.

• ACPI is disabled by default, unlike other machines with Award v6.00PG BIOS. It can be enabled through the
ACPI function option of the Power Management Setup menu on the BIOS setup.

2.8.7 Miscellaneous

Microsoft Virtual PC 2007

• This machine loads the American Megatrends BIOS from Virtual PC 2007 into 86Box’s emulation. It does not
use the virtualization engine or any other components from Virtual PC.

• Virtual PC’s special 8 MB video card, network card, WDM sound card and Guest Additions are not emulated by
86Box.

2.8.8 Footnotes

Broken ACPI

Some machines may have faulty or otherwise incomplete Advanced Configuration and Power Interface implementations
in their BIOSes, symptoms of which include:

• Windows 2000 and higher will install the “Standard PC” HAL, which does not enable ACPI features such as soft
power off and sleep mode;

• Booting an existing Windows installation with the ACPI HAL will result in a STOP 0x000000A5 blue screen;

• Booting Windows Vista or 7 (which require ACPI) will also result in a STOP 0x000000A5 blue screen, or a
Windows Boot Manager 0xc0000225 error.

There is no solution to this issue, as none of the currently emulated machines with broken ACPI ever received a BIOS
update to fix it.

32 Chapter 2. Contents

https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

86Box

2.9 Keyboard

This page outlines keyboard behavior specific to different host operating systems, real keyboards and emulated ma-
chines.

2.9.1 Host systems

Windows

• Multimedia keys such as Volume Up/Down cannot be passed through to the emulated machine due to a Windows
limitation.

• System-wide key remapping through the Scancode Map registry key (as performed by applications such as
SharpKeys) is fully supported.

macOS

• Apple keyboards with European or other ISO layouts may have the key below Esc and the key to the right
of Left Shift switch places in the emulated machine, due to a hardware quirk in many of those keyboards (both
internal and external) and a limitation in the way macOS corrects it.

• The Num = key is only usable in operating systems which recognize that key on Microsoft PS/2 multimedia
keyboards.

• Mac special keys are mapped to their PC equivalents where possible:

Em-
u-
lated
key

Host key

Win-
dows

Command

AltOption
Print
Screen

F13

Scroll
Lock

F14

PauseF15
In-
sert

Command + Fn + Delete (MacBook and tenkeyless keyboards)
Command + Forward Delete (full size keyboards)

Num
Lock

Clear

2.9. Keyboard 33

86Box

Linux

• The xkbcommon library is used to accurately map physical keys to the emulated keyboard on both X11 and
Wayland. When compiling 86Box from source, make sure the development files for libxkbcommon and
libxkbcommon-x11 are installed, as this is an optional build component.

2.9.2 Special keys

Some machines provide additional function or otherwise special keys on top of the standard PC layout. Those keys are
mapped to ones present on modern keyboards within reason.

Olivetti

The Olivetti M series special keys are mapped as such:

Em-
u-
lated
key

Host key

CLEARPage Up
BREAKPage Down
SCR
PRT

Print Screen

HELPMenu
00 Left Windows
F13Insert
F14Home
F15Del
F16End
F17Right Alt
F18Right Win

Toshiba

The Toshiba T1000 series function keys can be accessed by holding Right Alt or Right Ctrl:

Function Right Alt/Ctrl +
Show/hide numeric keypad overlay Num Lock
Change internal display font Right
Use internal display Home
Use external display End
Turbo mode on (T1200) Page Up
Turbo mode off (T1200) Page Down
Show/hide pop-up window (T1200) Print Screen

34 Chapter 2. Contents

https://xkbcommon.org

86Box

2.10 Disk images

86Box supports a large variety of disk image formats for the emulated storage drives.

2.10.1 Hard disk images

Supported formats:

For-
mat

File
ex-
ten-
sion

Notes

Raw
im-
age

ManyExtensions include: .hdd .ima .img

Japanese
FDI

.hdi

Ex-
tended
HDI
(HDX)

.hdx

Vir-
tual
Hard
Disk

.vhdFixed, Dynamic and Differencing VHDs are supported through the MiniVHD library.

Hard disk size limits

There are limits to how big of a hard disk an emulated machine can accept. Such limits will vary depending on the
machine’s BIOS. The table below lists all important limits applicable to the IDE bus:

Limit Disk size Cylinders Heads Sectors
20-bit CHS 504 MB 1024 16 63
12-bit cylinder 2015 MB 4095 16 63
ECHS translation 4032 MB 1024 128 63
Revised ECHS 7560 MB 1024 240 63
LBA translation 8064 MB 1024 256 63
16-bit cylinder 32255 MB 65535 16 63
28-bit LBA 131071 MB 65536 16 256

The maximum supported disk image size for IDE or SCSI is 131071 MB. Disk overlay software such as Ontrack Disk
Manager can work around BIOS limits and allow booting of IDE hard drives within the 131071 MB limit, with the
same caveats as using such software on a real machine.

2.10. Disk images 35

https://github.com/shermp/MiniVHD

86Box

2.10.2 Floppy disk images

Supported formats:

For-
mat

File
ex-
ten-
sion

Notes

Raw
im-
age

ManyExtensions include: .bin .dsk .flp .hdm .ima .img .vfd .xdf

86F.86fOnce loaded, any image can be converted to 86F through the status bar or Media menu.
CopyQM.cq

/
.cqm

DiskDupe.ddi
EZ-
DisKlone
plus

.fdf

For-
mat-
ted
Disk
Im-
age

.fdiRead only.

HxC
MFM

.mfmRead only.

Im-
ageDisk

.imd

Japanese
FDI

.fdi

PCjs
JSON

.jsonRead only. PCjs 1.0 format only; 2.0 not supported yet.

Teledisk.td0Read only.

Floppy disk detection

86Box determines the physical media format (sides, tracks per side, sectors per track, bytes per sector) of a floppy disk
image through the following methods:

1. Image file header data - not applicable for Raw and DiskDupe formats;

2. DOS BIOS Parameter Block data within the image;

3. If all else fails, a guess is made based on the image file’s size.

The BIOS Parameter Block detection method may behave incorrectly with non-DOS floppy disks. Installation floppies
for UNIX and Linux are common examples of non-DOS disks. Disabling Check BPB is strongly recommended when
accessing these, as an inaccurate BPB detection may result in read errors, data corruption and other issues.

Note: When using a Raw image of a non-DOS floppy with Check BPB disabled, make sure the image file is not
truncated (smaller than its media size), otherwise incorrect behavior may still occur.

36 Chapter 2. Contents

https://en.wikipedia.org/wiki/BIOS_parameter_block

86Box

2.10.3 MO / ZIP removable disk images

Supported formats:

For-
mat

File
ex-
ten-
sion

Notes

Raw
im-
age

ManyExtensions include: .ima .img

Japanese
FDI

.mdi
/
.zdi

.mdi for MO, .zdi for ZIP.

2.10.4 CD-ROM / DVD-ROM optical disc images

Supported formats:

For-
mat

File
ex-
ten-
sion

Notes

Cue
sheet

.cue
+
.bin

Audio tracks are supported.

ISO.iso

CD audio

Compact Disc Digital Audio (CDDA) playback through the emulated CD-ROM drives is supported on Cue sheet
images. Audio output is enabled on the first CD-ROM drive and muted on subsequent drives by default; individual
drives can be muted or unmuted through the status bar or Media menu.

Note: Only raw format (.bin) tracks are supported. Compressed or otherwise encapsulated audio tracks (.wav, .mp3,
.ogg, .flac and other formats) are not supported.

2.10.5 Cassette tape images

Supported formats:

2.10. Disk images 37

86Box

For-
mat

File
ex-
ten-
sion

Notes

Raw
PCM
au-
dio

ManyExtensions include: .pcm .raw
Audio format must be unsigned 8-bit mono.

PCE
cas-
sette

.cas

Wave
au-
dio

.wavAudio format must be unsigned 8-bit mono.

2.10.6 PCjr cartridge images

Supported formats:

For-
mat

File
ex-
ten-
sion

Notes

Raw
im-
age

ManyExtensions include: .a .b .bin

JRip-
Cart

.jrc

2.10.7 Creating and using disk images

Disk images are a convenient way to transfer files in and out of emulated machines, without the complexity of setting
up networking. There are many different command line and GUI tools available for manipulating disk images on each
host operating system.

Warning: Before editing or mounting any disk images, make sure they are not in use by any emulated machine
that is currently running.

Editing and mounting on Windows

WinImage can be used to create and manipulate disk images on Windows.

VHD images can be natively mounted through the Disk Management tool (diskmgmt.msc): select Action > Attach
VHD to mount an image, and eject the drive through File Explorer to unmount. The diskpart command line utility
also provides VHD mounting/unmounting functionality.

38 Chapter 2. Contents

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/diskpart

86Box

Mounting on macOS

macOS can natively mount raw hard disk and floppy images formatted as FAT and its variants. Open the image in
Finder to mount it, and eject the disk to unmount.

Editing on Linux and macOS

The mtools suite is “a collection of utilities to access MS-DOS disks from GNU and Unix without mounting them”.
It can be used to create floppy disk images and directly copy files to them. The mtools package is available on many
Linux distributions, as well as macOS Homebrew.

Creating floppy images

The following command will create a 1.44M (1440 KB, double-sided, 18 sectors per track, 80 cylinders) floppy image
named floppy.img with a label of LABEL:

mformat -f 1440 -v LABEL -C -i floppy.img ::

The -f option specifies the format of the floppy being created. The command can be adjusted for format, label, and
image name as needed. Refer to the mtools documentation for a full list of supported formats.

Copying files to floppy images

The following command will copy file1 and file2 to the floppy image floppy.img:

mcopy -i floppy.img file1 file2 ::

Wildcards are also supported with mcopy.

Note: The :: is required to let mtools know there are no more files to copy or arguments to process.

Mounting on Linux

Linux can natively mount raw disk images (floppy or hard disk) of most types (FAT and NTFS included). The easiest
path is to use losetup so that partitions can be properly recognized. Floppies are not normally partitioned, and you can
use mount directly.

All following commands must be run as root:

losetup -fP /path/to/86box/hdd
losetup # to verify which loopback device was set up.

Assuming /dev/loop0 was selected:
mount /dev/loop0p1 /mnt # Mount the first partition at /mnt

Disk images should at least be unmounted before running 86Box again, and preferably detached too:

umount /mnt
losetup -d /dev/loop0

Partitionless media can be mounted directly:

2.10. Disk images 39

https://www.gnu.org/software/mtools/
https://www.gnu.org/software/mtools/manual/mtools.html#mformat
https://manpages.debian.org/bookworm/mount/losetup.8.en.html
https://manpages.debian.org/bookworm/mount/mount.8.en.html

86Box

mount /path/to/86box/fdd /mnt

VHD images may be mounted via qemu-nbd:

modprobe nbd max_part=16
qemu-nbd -f vpc -c /dev/nbd0 /path/to/86box/hdd
mount /dev/nbd0p1 /mnt
After doing some work...

umount /mnt
qemu-nbd -d /dev/nbd0

2.11 Tertiary and quaternary IDE

The additional tertiary and quaternary IDE controllers, enabled through the Storage controllers settings page, are not
supported by all emulated BIOSes and may require manual configuration of emulated operating systems. The specific
details are outlined on this page.

2.11.1 System resources

The following resources are used by these additional controllers:

Channel Main I/O port Status I/O port IRQ
Tertiary 01E8h 03EEh 11
Quaternary 0168h 036Eh 10

Important: 86Box 4.0.1: The tertiary and quaternary I/O ports and IRQs were incorrectly switched in older 86Box
versions; the table above applies to the corrected resources in 4.0.1.

Each controller’s IRQ can be configured through its respective Settings button on Tertiary / Quaternary IDE Controller.
The Plug and Play option on the IRQ box enables Plug and Play functionality, allowing a PnP compliant operating
system to automatically set the controller’s IRQ, while all other options set a static IRQ with no Plug and Play.

Note:

• When using a non-Plug and Play IDE controller on an emulated machine which supports Plug and Play, remember
to mark the IRQ as being used by a legacy ISA device in the BIOS setup utility.

• Many operating systems do not allow non-Plug and Play IDE controllers to use IRQs outside of the default ones
listed on the table above.

40 Chapter 2. Contents

https://manpages.debian.org/bookworm/qemu-utils/qemu-nbd.8.en.html

86Box

2.11.2 BIOS support

The tertiary and quaternary controllers are not visible and not bootable by the BIOS on most machines currently
emulated by 86Box, no matter whether or not they are Plug and Play.

Machines with MR BIOS version 3 are the rare exception to this rule, since that BIOS provides full support for non-
Plug and Play controllers (as long as the default IRQs for each controller are used), including bootability and INT 13h
services.

2.11.3 Operating system support

DOS and real mode

DOS and other real mode operating systems rely on INT 13h services provided by the BIOS to access hard disks.
These are only provided for the tertiary and quaternary channels by MR BIOS version 3, as mentioned above.

Windows 95, 98 and Me

The Windows 9x family will automatically detect Plug and Play IDE controllers on boot. Non-Plug and Play controllers
will be detected during installation only if the BIOS supports them. Follow these steps to enable a non-Plug and Play
controller on an already-installed system:

1. Go to the Add New Hardware control panel.

2. Add a Standard IDE/ESDI Hard Disk Controller from the Hard disk controllers category.

3. Don’t restart the system when asked to.

4. Go to the Device Manager tab of the System control panel.

5. Select the newly-added Standard IDE/ESDI Hard Disk Controller device from the Hard disk controllers category
and click Properties.

6. Go to the Resources tab.

7. Select Basic configuration 4 in the Settings based on box.

8. Change the resource settings to match the I/O ports on the table above and the configured IRQ. The first In-
put/Output Range range corresponds to the main I/O port, the second one corresponds to the status I/O port,
and Interrupt Request corresponds to the IRQ.

• The status I/O port range is off by 6. Select 03E8 for the tertiary channel or 0368 for the quaternary channel.

• The screenshot below shows an example configuration for the tertiary channel.

9. If both the tertiary and quaternary channels are enabled, repeat the steps above to enable the other controller.

2.11. Tertiary and quaternary IDE 41

86Box

Windows NT, 2000 and XP

Windows 2000 and XP will automatically detect Plug and Play IDE controllers on boot. Additionally, Windows NT
3.5, 4.0, 2000 and XP will automatically detect non-Plug and Play controllers during installation, regardless of BIOS
support; however, this auto-detection of non-PnP controllers does not work on most machines with Award BIOS.

Note: If you install the system to a hard disk on one of the additional controllers, it will not be bootable unless the
BIOS supports booting from these controllers.

On Windows 2000 only, non-Plug and Play controllers can be enabled on an already-installed system through Add
New Hardware similarly to Windows 9x as shown above. The resource parameters cannot be changed, and therefore,
only the default IRQs for each controller are supported. Basic configuration 0002 corresponds to the tertiary channel,
while Basic configuration 0003 corresponds to the quaternary channel.

Windows Vista and 7

The Windows NT 6 family does not support legacy (ISA or VLB) IDE controllers, and therefore cannot use the
additional channels as currently emulated by 86Box.

Linux

There are different steps for enabling additional IDE controllers on Linux, depending on which IDE driver stack is used
by your distribution’s kernel.

Modules can be loaded at any time with the modprobe command, or loaded on boot by adding the module’s name
(and parameters if required) to a file in /etc/modules-load.d on newer systemd-based distributions, or the /etc/
modules file on older distributions.

• Legacy IDE (typically kernels older than 2.6.19):

– Load the ide-pnp module to enable Plug and Play controllers.

– Non-Plug and Play controllers require editing the kernel command line on your bootloader to add each
controller’s I/O ports and IRQ:

42 Chapter 2. Contents

86Box

∗ Tertiary: ide2=0x1e8,0x3ee,11 (assuming IRQ 11)

∗ Quaternary: ide3=0x168,0x36e,10 (assuming IRQ 10)

• libATA (typically kernels 2.6.19 and above):

– Load the pata_isapnp module to enable Plug and Play controllers.

– Load the pata_legacy module with the probe_all=1 parameter to automatically detect and enable non-
Plug and Play controllers. Only the default IRQs for each controller are supported.

Note: Some distributions may automatically detect additional IDE controllers; however, that is very rarely the case.

2.12 Networking

86Box supports different connection modes for the emulated network cards. The specific details on these connection
modes and network emulation as a whole are outlined on this page.

2.12.1 Null Driver

Default mode. The selected network card will be available to the emulated machine, but any packets sent through it
will be dropped.

In this mode, the network card will default to a disconnected cable on startup; if the cable is connected through the
status bar or Media menu, cards with link state detection support will report a connection, but packets will still be
dropped.

2.12.2 SLiRP

SLiRP creates a private network with a virtual router, allowing the emulated machine to reach the host, its network and
the Internet; on the other hand, the host and other devices on its network cannot reach the emulated machine, unless
port forwarding is configured. This is similar to the NAT mode on other emulators and virtualizers.

The virtual router provides automatic IP configuration to the emulated machine through DHCP. If that is not an option,
use the following static IP settings, replacing x with 2, 3, 4 or 5 for the first, second, third or fourth network card to use
SLiRP respectively:

• IP address: 10.0.x.15

• Subnet mask: 255.255.255.0

• Default gateway: 10.0.x.2

• DNS server: 10.0.x.3

The host can be reached through IP address 10.0.x.2, while other devices on the host’s network can be reached through
their normal IP addresses.

Note: SLiRP is only capable of routing TCP and UDP traffic, with limited ICMP ping support. Other protocols such
as IPX and NetBEUI can only be used with PCap or VDE networking.

2.12. Networking 43

86Box

2.12.3 PCap

PCap connects directly to one of the host’s network adapters. The emulated machine must be configured as if it were
a real machine on your network. This is similar to the Bridge mode on other emulators and virtualizers.

This mode requires Npcap (or another WinPcap-compatible driver) to be installed on Windows hosts, or the correct
permissions to be set for accessing pcap on Linux or bpf on macOS hosts. Only wired Ethernet network connections
are compatible; Wi-Fi and other connections will not work at all, as they do not allow PCap to listen for packets bound
to the emulated card’s MAC address.

Private PCap network

If you have an incompatible network connection on your host system (such as Wi-Fi), or if you wish to connect the
emulated machine to the host without also connecting it to your network, a private network can be created with PCap
in one of two ways:

• Install and configure the Microsoft KM-TEST Loopback Adapter included with Windows.

– Guides on how to install this adapter are available online.

– The adapter alone only provides a direct connection to the host, with no DHCP server, therefore requiring
manual IP configuration on both the host and the emulated machine.

– Windows’ Internet Connection Sharing feature can be used to connect the emulated machine to the host’s
network and the Internet, with DHCP for automatic IP configuration, similarly to SLiRP but with the added
benefit that the host can reach the emulated machine without port forwarding.

∗ Port forwarding can be performed through Internet Connection Sharing’s Settings.

• If VMware is installed, use one of the VMnet adapters included with it.

– VMnet1 (Host-only) connects to the host only.

– VMnet8 (NAT) connects to the host, its network and the Internet.

∗ Port forwarding can be performed through the Virtual Network Editor’s NAT Settings.

2.12.4 VDE

Virtual Distributed Ethernet is a virtual Ethernet switch system for connecting different applications such as 86Box to
each other. See VDE Basic Networking for a brief overview.

Note: VDE is only available on Linux and macOS hosts.

One of VDE’s core concepts is the plug. 86Box allows for plugging an emulated machine into a virtual switch created
by VDE; this virtual layer 2 switch is capable of carrying any Ethernet-based protocols such as IP and IPX.

44 Chapter 2. Contents

https://npcap.com/
https://github.com/virtualsquare/vde-2
http://wiki.virtualsquare.org/#!tutorials/vdebasics.md

86Box

Installing VDE tools

The VDE tools are required to create the virtual switch that 86Box attaches to with a virtual cable.

Linux

On Debian, Ubuntu and derivatives, VDE and some of its associated commands are split into different packages. Install
the libraries and their associated tools:

apt install libvdeplug2 vde-switch vde2

Note: Other distributions should have similar package names.

macOS

VDE is available through Homebrew or MacPorts.

brew install vde

port install vde2

Creating the virtual switch

Before connecting 86Box, a virtual switch must be created with the vde_switch tool.

Note: vde_switch requires root privileges to create the switch. Applications will be able to connect to the switch
with unprivileged (non-root) permissions.

vde_switch --mode 666 --numports 8 --mgmt /tmp/vde.mgmt --mgmtmode 666 -s /tmp/vde.ctl

This command:

• Creates the management socket at /tmp/vde.mgmt

• Creates the control socket at /tmp/vde.ctl

• Sets the sockets’ permissions to world read/write to allow unprivileged access

• Sets the number of switch ports to 8

Adding --daemon to the command will run vde_switch in the background.

Note the /tmp/vde.ctl path for the control socket, which is what should be provided in the network settings.

Note: You can adjust the file paths or permissions as necessary. Refer to vde_switch -h for more information on
available options.

2.12. Networking 45

86Box

Configuring 86Box for VDE

Go to the emulated machine’s network settings and select VDE as the mode for the emulated network card. Enter the
control socket path, which is /tmp/vde.ctl for the example above, in the VDE Socket box.

Once these settings are saved, the machine should automatically connect to the VDE switch. Check the status bar or
Media menu to make sure the emulated network cable is actually connected.

VDE switch status

The vdeterm command can be used to view the status of the virtual switch. It requires the path to the management
socket (instead of the control socket) created alongside the switch; the command would be vdeterm /tmp/vde.mgmt
for the example above.

Once in the command line, enter help to view a list of available commands. One helpful command is port/allprint
which displays a list of all virtual switch ports and the processes attached to them:

vde[/tmp/vde.mgmt]: port/allprint

Port 0001 untagged_vlan=0000 ACTIVE - Unnamed Allocatable
Current User: myusername Access Control: (User: NONE - Group: NONE)
-- endpoint ID 0003 module unix prog : 86Box virtual card user=myusername PID=12345

Success

In addition to vdeterm, the command line interface can be accessed through vde_switch if it was started without the
--daemon option, by pressing Enter on its terminal.

Other VDE features

This guide only covers the basics of VDE. It provides many more useful features such as:

• Connecting virtual switches across host machines with vde_cryptcab

• Bridging virtual switches with network interfaces to provide access to the Internet and other networks

• Connecting to other emulators and virtualizers with VDE support such as QEMU and VirtualBox

• Creating VLANs and access control policies which can be assigned to switch ports

2.12.5 Advanced networking features

The following advanced features can be accessed by directly editing the emulated machine’s configuration file, which
is 86box.cfg by default.

MAC address

With the exception of [LPT] Parallel Port Internet Protocol, every emulated network card stores its MAC address in
the mac directive of its respective configuration file section. Only the suffix (last three octets) of the MAC address can be
edited; the prefix (first three octets) will always be an Organizationally Unique Identifier belonging to the manufacturer,
such as 00:E0:4C for Realtek.

Example: MAC address 00:E0:4C:35:F4:C2 for the Realtek RTL8029AS

[Realtek RTL8029AS]
mac = 35:f4:c2

46 Chapter 2. Contents

https://en.wikipedia.org/wiki/Organizationally_unique_identifier

86Box

SLiRP port forwarding

Port forwarding allows the host system and other devices on its network to access TCP and UDP servers running
on the emulated machine. This feature is configured through the [SLiRP Port Forwarding #x] section of the
configuration file, where x is the number of the emulated network card, in the range of 1 to 4.

Each port forward must be assigned a number, starting at 0 and counting up (skipping a number will result in all
subsequent port forwards being ignored), which replaces X on the following directives:

• X_protocol: Port type: tcp or udp (default: tcp)

• X_external: Port number on the host (default: same port number as X_internal)

• X_internal: Port number on the emulated machine (default: same port number as X_external)

The host system can access forwarded ports through 127.0.0.1 or its own IP address, while other devices on the network
can access them through the host’s IP address.

Note: The emulated machine’s IP address must be set to 10.0.x.15 (the default IP provided through DHCP) for port
forwarding to work.

Example: forward host TCP port 8080 to emulated machine port 80, and host UDP port 5555 to emulated machine
port 5555

[SLiRP Port Forwarding #1]
0_external = 8080
0_internal = 80
1_protocol = udp
1_external = 5555

2.13 ISABugger

The ISABugger card provides a debugging interface for software developers, consisting of two 8-bit hexadecimal dis-
plays and two banks of 8 LEDs, all controlled by the emulated machine. It can be enabled through the Peripherals
settings page.

These displays and LEDs are displayed on the status bar as described in the diagram below:

2.13. ISABugger 47

86Box

2.13.1 Background

From src/device/bugger.c:

Implementation of the ISA Bus (de)Bugger expansion card
sold as a DIY kit in the late 1980's in The Netherlands.
This card was a assemble-yourself 8bit ISA addon card for
PC and AT systems that had several tools to aid in low-
level debugging (mostly for faulty BIOSes, bootloaders
and system kernels...)

The standard version had a total of 16 LEDs (8 RED, plus
8 GREEN), two 7-segment displays and one 8-position DIP
switch block on board for use as debugging tools.

The "Plus" version, added an extra 2 7-segment displays,
as well as a very simple RS-232 serial interface that
could be used as a mini-console terminal.

2.13.2 Registers

The ISABugger’s control registers can be accessed through the following operations on I/O ports 0x7a and 0x7b:

• Writing: write the register’s index to port 0x7a, then write the value to port 0x7b.

• Reading: write the register’s index to port 0x7a, then read the value from port 0x7b.

• Index reading: the last register index written to port 0x7a can be read back from the same port. The most
significant bit is always set, as an indicator that the ISABugger is enabled.

Note: The ISABugger I/O ports only support byte (inb/outb) operations. Word (inw/outw) and dword (inl/outl)
operations will result in undefined behavior; so will selecting or attempting to read back an unknown register index, or
performing an illegal operation such as reading from a write-only register.

Register reference

Index 0x00 - Red LEDs (write-only)

Index 0x01 - Green LEDs (write-only)

Each LED bank shows a binary representation of the 8-bit value written to its register, from the most significant bit on
the left to the least significant bit on the right. Setting a bit will light up its corresponding LED (displayed as G or R),
and clearing a bit will dim its LED (displayed as g or r).

48 Chapter 2. Contents

86Box

Index 0x02 - Right display (write-only)

Index 0x04 - Left display (write-only)

Each display shows a hexadecimal representation of the 8-bit value written to its register.

Index 0x20 - Serial port data (not implemented) (read/write)

Index 0x40 - Serial port configuration (not implemented) (read/write)

While the aforementioned real ISABugger card is equipped with an independent RS-232 serial interface, that feature
is currently not implemented on 86Box in an user-facing manner.

Index 0x80 - Initialize (not implemented) (write-only)

This register has no effect on 86Box, as the emulated ISABugger is always enabled and ready.

Index 0xff - Reset (special)

Writing register index 0xff to port 0x7a will immediately reset all registers to their startup value, clearing all displays
and LED banks.

This is a special register which cannot be read or written; writing to port 0x7b immediately after a reset will result in
the value being sent to the default register index of 0x00, which corresponds to the red LEDs.

2.14 Build guide

86Box is built using CMake in combination with other build systems. The build actions are described in CMakeLists.
txt files in most directories, which are the translated to the build system of choice by a CMake generator.

The following files are of particular interest:

• ./CMakeLists.txt is the top level file, which defines the 86Box project and available configuration options;

• ./src/CMakeLists.txt defines the main 86Box executable target

2.14.1 Toolchain files

Toolchain files are contained in the cmake directory. They define compiler flags and the 86Box-specific Release,
Debug and Optimized build types.

It is not required to use the included toolchain files, but it is highly recommended to make sure your build is compiled
with the same configuration as used by the rest of the team and our userbase.

The currently included files are:

• flags-gcc.cmake contains the generic flags used by GCC-like compilers

– flags-gcc-<arch>.cmake includes flags specific to builds for a given architecture

• llvm-win32-<arch>.cmake defines the build environment for use with LLVM/clang and vcpkg on Windows

Toolchain files are consumed during the initial project generation stage by passing their path in the
CMAKE_TOOLCHAIN_FILE variable, e.g.:

2.14. Build guide 49

https://cmake.org/

86Box

$ cmake ... -D CMAKE_TOOLCHAIN_FILE=./cmake/flags-gcc-x86_64.cmake

Note: When using vcpkg, which uses its own toolchain file, the 86Box toolchain files must be chainloaded using the
VCPKG_CHAINLOAD_TOOLCHAIN_FILE variable.

2.14.2 Presets

The CMakePresets.json file contains several common compilation options for 86Box:

Build name Debug New dynarec Dev. branch Optimized
regular
debug
experimental
optimized

The presets are consumed during the initial project generation stage by using the --preset CMake command line
option, e.g.:

$ cmake ... --preset regular

Note: Presets require CMake 3.21 or newer.

2.14.3 Obtaining the source code

There are multiple ways to obtain the 86Box source code in order to build it:

• Use the git command line. The utility needs to be installed and present in the search path.

$ git clone https://github.com/86Box/86Box.git

• Use GitHub Desktop, SourceTree, Git for Windows or other Git frontend on your host.

• Download a ZIP file from GitHub and extract it. (not recommended)

2.14.4 Prerequisites

The build process requires the following tools:

• CMake (>= 3.15)

• pkg-config

• libatomic

Development files for the following libraries are also needed:

• FluidSynth

• FreeType

• libpng

50 Chapter 2. Contents

86Box

• libslirp

• RtMidi

• SDL2

• FAudio (optional on Windows)

• Qt5 or Qt6 (optional, can be disabled)

Obtaining the dependencies

MSYS2

$ pacman -Syu $MINGW_PACKAGE_PREFIX-ninja $MINGW_PACKAGE_PREFIX-cmake $MINGW_PACKAGE_
→˓PREFIX-gcc $MINGW_PACKAGE_PREFIX-pkg-config $MINGW_PACKAGE_PREFIX-openal $MINGW_
→˓PACKAGE_PREFIX-freetype $MINGW_PACKAGE_PREFIX-SDL2 $MINGW_PACKAGE_PREFIX-zlib $MINGW_
→˓PACKAGE_PREFIX-libpng $MINGW_PACKAGE_PREFIX-rtmidi $MINGW_PACKAGE_PREFIX-qt5-static
→˓$MINGW_PACKAGE_PREFIX-qt5-translations

Note: The command installs the packages only for the currently used MinGW environment, therefore you will need
to repeat the procedure for every target you plan to build for.

Ubuntu, Debian

$ sudo apt install build-essential cmake extra-cmake-modules pkg-config ninja-build␣
→˓libfreetype-dev libsdl2-dev libpng-dev libopenal-dev librtmidi-dev libfaudio-dev␣
→˓qtbase5-dev qtbase5-private-dev qttools5-dev libevdev-dev libxkbcommon-dev␣
→˓libxkbcommon-x11-dev libslirp-dev libfluidsynth-dev

Arch

$ sudo pacman -Sy base-devel cmake extra-cmake-modules pkg-config ninja libfreetype sdl2␣
→˓libpng lib32-openal rtmidi faudio qt5-base qt5-xcb-private-headers qt5-tools libevdev␣
→˓libxkbcommon libxkbcommon-x11 vulkan-devel

Note: Make sure to enable the multilib repository in your pacman.conf file.

2.14. Build guide 51

86Box

Fedora

$ sudo dnf groupinstall "C Development Tools and Libraries"
$ sudo dnf install cmake extra-cmake-modules pkg-config ninja-build freetype-devel SDL2-
→˓devel libatomic libpng-devel libslirp-devel libXi-devel openal-soft-devel rtmidi-devel␣
→˓libFAudio-devel qt5-linguist qt5-qtconfiguration-devel qt5-qtbase-private-devel qt5-
→˓qtbase-static wayland-devel libevdev-devel libxkbcommon-x11-devel

macOS (Homebrew)

$ brew install cmake ninja pkg-config freetype sdl2 libpng openal-soft rtmidi faudio qt@5

2.14.5 Building

Building 86Box can generally be condensed to the following steps:

1. Generate the project. This generally involves invoking the following base command line with additional options
according to the development environment:

$ cmake -B <build directory> -S <source directory>

Build directory is where the resulting binaries and other build artifacts will be stored. Source directory is the
location of the 86Box source code.

Toolchain files and presets are specified at this point by using the respective options.

Other options can be specified using the -D option, e.g. -D NEW_DYNAREC=ON enables the new dynamic recom-
piler. See CMakeLists.txt in the root of the repository for the full list of available options.

2. Build the project itself. This can be done by changing to the chosen build directory and invoking the chosen
build system, or you can use the following universal CMake command:

$ cmake --build <build directory>

Appending the -jN option (where N is a number of threads you want to use for the compilation process) will run
the build on multiple threads, speeding up the process some.

Note: If you make changes to the CMake build files, running the command will automatically regenerate the
project. There is no need to repeat step 1 or to delete the build directory.

3. If everything succeeds, you should find the resulting executable in the build directory. Depending on the build
system, it might be located in some of its subdirectories.

Tip: The executable can be copied to a consistent location by running the following command:

$ cmake --install <build directory> --prefix <destination>

The emulator file should then be copied into a bin directory in the specified location.

Appending the --strip parameter will also strip debug symbols from the executable in the process.

52 Chapter 2. Contents

86Box

2.15 Advanced builds

The 86Box Jenkins provides all kinds of pre-release testing builds for advanced users. These are linked to the 86Box
git repository on GitHub; a new build is produced with the latest source code every time the repository is updated.

Important: Testing builds are development snapshots which may contain bugs, unfinished features or other issues.
These should only be used if you know what you’re doing.

2.15.1 Variants

86Box builds are available in a number of variants. The Jenkins page will automatically detect the recommended
variant for the system you’re viewing it on, but if you’re downloading builds for a different system (or you have disabled
JavaScript), use the guide below to select a variant:

• The Old Recompiler is recommended. The New Recompiler is in beta; you may experience bugs and perfor-
mance loss with it.

– The Old Recompiler is not available for the ARM architecture. You must select the New Recompiler for
running 86Box on ARM Linux systems such as the Raspberry Pi.

• On Windows, x86 (32-bit) is recommended even if you have a 64-bit system.

– x64 (64-bit) allows for emulating more than 2 GB of RAM on some later machines and using larger sound-
fonts with FluidSynth, at a slight performance loss.

• On Linux, select the correct architecture for your system, as most distributions lack x64-to-x86 and ARM64-to-
ARM32 backwards compatibility by default.

• On macOS, Universal supports both Intel and Apple Silicon Macs.

– The New Recompiler is always used on Apple Silicon due to its ARM architecture, even if the Old Recom-
piler is selected.

Discontinued variants

These variants are no longer built by Jenkins and can only be compiled from source.

• Debug variants (86Box-Debug) as of April 2nd 2023.

– These variants were compiled with debug symbols and reduced optimizations to help with running the
emulator under gdb or other debuggers. They were eliminated as the setup process for debugging grew
closer to just compiling from source instead.

• Dev variants (86Box-Dev and 86Box-DevODR) as of November 18th 2021.

– These variants contained incomplete and experimental features subject to change at any time, with the -Dev
variant also containing the New Recompiler beta.

• Optimized variants (86Box-Optimized) as of March 18th 2021.

– These variants’ aggressive microarchitecture-specific optimizations provided very little performance im-
provement (within margin of error on modern CPUs) while introducing bugs and other incorrect behavior.

2.15. Advanced builds 53

https://ci.86box.net/job/86Box/
https://github.com/86Box/86Box
https://github.com/86Box/86Box

86Box

2.16 API

This section documents the internal Application Programming Interface for extending 86Box.

2.16.1 Devices

The device is the main unit of emulated components in 86Box. Each device is represented by one or more con-
stant device_t objects, which contain metadata about the device itself, several callbacks and an array of user-facing
configuration options. Unless otherwise stated, all structures, functions and constants in this page are provided by
86box/device.h.

54 Chapter 2. Contents

86Box

Table 1: device_t
Member Description
name The device’s name, displayed in the

user interface. "Foo-1234" for ex-
ample. Suffixes like "(PCI)" are re-
moved at run-time.

internal_name The device’s internal name, used to
identify it in the emulated machine’s
configuration file. "foo1234" for
example.

flags One or more bit flags to indicate the
expansion bus(es) supported by the
device, for determining device avail-
ability on the selected machine:

• DEVICE_ISA: 8-bit ISA;
• DEVICE_AT: 16-bit ISA;
• DEVICE_EISA: EISA (re-

served for future use);
• DEVICE_VLB: VESA Local

Bus or proprietary equiva-
lents;

• DEVICE_PCI: 32-bit PCI;
• DEVICE_AGP: AGP 3.3V;
• DEVICE_AC97: AMR, CNR

or ACR;
• DEVICE_PCJR: IBM PCjr;
• DEVICE_PS2: IBM PS/1 or

PS/2;
• DEVICE_MCA: IBM Micro

Channel Architecture;
• DEVICE_CBUS: PC-98 C-BUS

(reserved for future use);
• DEVICE_COM: serial port (re-

served for future use);
• DEVICE_LPT: parallel port

(reserved for future use).

local 32-bit value which can be read from
this structure by the init callback.
Use this value to tell different sub-
types of the same device, for exam-
ple.

init Function called whenever this de-
vice is initialized, either from start-
ing 86Box or from a hard reset. Can
be NULL, in which case the opaque
pointer passed to other callbacks
will be invalid. Takes the form of:
void *init(const struct
device_t *info)

• info: pointer to this
device_t structure;

• Return value: opaque pointer
passed to the other callbacks
below, usually a pointer to the
device’s state structure.

close Function called whenever this de-
vice is de-initialized, either from
closing 86Box or from a hard reset.
Can be NULL. Takes the form of:
void close(void *priv)

• priv: opaque pointer previ-
ously returned by init.

reset Function called whenever this de-
vice undergoes a soft reset. Can be
NULL. Takes the form of:
void reset(void *priv)

• priv: opaque pointer previ-
ously returned by init.

available Function called whenever this de-
vice’s availability is being checked.
Can be NULL, in which case the de-
vice will always be available. Takes
the form of:
int available()

• Return value: 1 if the device is
available for selection, or 0 if
it is unavailable (due to miss-
ing ROMs, for example).

poll Function called whenever the mouse
position is updated. Valid for mouse
devices only. Takes the form of:
int poll(int x, int y, int
z, int b, void *priv)

• x and y: relative mouse move-
ment coordinates (signed);

• z: relative scroll wheel move-
ment coordinate (signed);

• b: button state: bit 0 (0x1)
set if left button pressed, bit
1 (0x2) set if right button
pressed, bit 2 (0x4) set if mid-
dle button pressed;

• priv: opaque pointer previ-
ously returned by init;

• Return value: 0 if the change
was processed, or any other
value otherwise.

register_pci_slot Reserved for future use.
speed_changed Function called whenever the emu-

lated CPU clock speed is changed.
Can be NULL. Timer intervals (when
using the undocumented legacy
timer API) and anything else sensi-
tive to the CPU clock speed should
be updated in this callback. Takes
the form of:
void speed_changed(void
*priv)

• priv: opaque pointer previ-
ously returned by init.

force_redraw Function called whenever the emu-
lated screen has to be fully redrawn.
Can be NULL. Only useful for video
cards. Takes the form of:
void force_redraw(void
*priv)

• priv: opaque pointer previ-
ously returned by init.

config Array of device configuration op-
tions, or NULL if no options are avail-
able.

2.16. API 55

86Box

State structure

Most devices need a place to store their internal state. We discourage the use of global structures, and instead recom-
mend allocating a state structure dynamically in the init callback and freeing it in the close callback.

Code example: allocating and deallocating a state structure

#include <86box/device.h>

typedef struct {
uint32_t type; /* example: copied from device_t.local */
uint8_t regs[256]; /* example: 256*8-bit registers */

} foo_t;

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
foo_t *dev = (foo_t *) malloc(sizeof(foo_t));
memset(dev, 0, sizeof(foo_t)); /* blank structure */

/* Do whatever you want. */
dev->type = info->local; /* copy device_t.local value */

/* Return a pointer to the state structure. */
return dev;

}

static void
foo_close(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Do whatever you want, then deallocate the state structure. */
free(dev);

}

const device_t foo1234_device = {
.name = "Foo-1234",
.internal_name = "foo1234",
.flags = DEVICE_AT, /* 16-bit ISA */
.local = 1234,
.init = foo_init,
.close = foo_close,
/* ... */

};

const device_t foo4321_device = {
.name = "Foo-4321",
.internal_name = "foo4321",
.flags = DEVICE_PCI, /* 32-bit PCI */
.local = 4321, /* different device subtype */
.init = foo_init,

(continues on next page)

56 Chapter 2. Contents

86Box

(continued from previous page)

.close = foo_close,
/* ... */

};

Registration

New devices must be registered before they can be selected by the user. This is usually accomplished by adding one
or more device_t pointers to the device table for the device’s class:

• Video cards: video_cards in src/video/vid_table.c

• Sound cards: sound_cards in src/sound/sound.c

• Network cards: net_cards in src/network/network.c

• Parallel port devices: lpt_devices in src/lpt.c

• Hard disk controllers: controllers in src/disk/hdc.c

• Floppy disk controllers: fdc_cards in src/floppy/fdc.c

• SCSI controllers: scsi_cards in src/scsi/scsi.c

• ISA RTC cards: boards in src/device/isartc.c

• ISA memory expansion cards: boards in src/device/isamem.c

Devices not covered by any of the above classes may require further integration through modifications to the user
interface and configuration loading/saving systems.

Availability

A device will be available for selection by the user if these criteria are met:

1. The device is registered, so that the user interface knows about it;

2. The selected machine has any of the expansion buses specified in the device’s flags;

3. The device’s available callback returns 1 to indicate the device is available (this will always be true if the
available callback function is NULL).

The available callback can be used to verify the presence of ROM files if any ROMs are required by the device.

Code example: available checking for the presence of a ROM

#include <86box/device.h>
#include <86box/rom.h>

static int
foo1234_available()
{

return rom_present("roms/scsi/foo/foo1234.bin");
}

const device_t foo1234_device = {
/* ... */
{ .available = foo1234_available }, /* must have brackets due to the union */

(continues on next page)

2.16. API 57

86Box

(continued from previous page)

/* ... */
};

Configuration

Devices can have any number of user-facing configuration options, usually accessed through the Configure button next
to the selection box for the device’s class:

Fig. 1: All option types currently configurable through the user interface.

These options are stored in the emulated machine’s configuration file, in a section identified by the device’s name:

[Foo-1234]
selection = 0
hex16 = 0220
hex20 = D8000
fname = D:/VMs/86Box/86Box.exe
binary = 1
spinner = 1234
midi_out = 0
midi_in = 0

Configuration options can be specified in the config member of device_t, as a pointer to a const array of
device_config_t objects terminated by an object of type CONFIG_END.

Code example: device configuration options

#include <86box/device.h>

static const device_config_t foo_config[] = {
{ "selection", "Selection", CONFIG_SELECTION, "", 5, "", { 0 },

{
{ "IRQ 5", 5 },
{ "IRQ 7", 7 },
{ "" }

}
},
{ "hex16", "16-bit hex", CONFIG_HEX16, "", 0x220, "", { 0 },

{
{ "0x220", 0x220 },
{ "0x330", 0x330 },
{ "" }

}
},

(continues on next page)

58 Chapter 2. Contents

86Box

(continued from previous page)

{ "hex20", "20-bit hex", CONFIG_HEX20, "", 0xd8000, "", { 0 },
{

/* While the memory *segment* is displayed to the user, we store the
linear (segment << 4) base address in the configuration file. */

{ "D800h", 0xd8000 },
{ "DC00h", 0xdc000 },
{ "" }

}
},
{ "string", "String", CONFIG_STRING, "Default" },
{ "fname", "Filename", CONFIG_FNAME, "", 0, "File type (*.foo)|*.

→˓foo|Another file type (*.bar)|*.bar" },
{ "binary", "Binary", CONFIG_BINARY, "", 1 /* checked by default */ },
{ "int", "Integer", CONFIG_INT, "", 1234 },
{ "spinner", "Spinner", CONFIG_SPINNER, "", 1234, "", { 1204, 1294, 10 } },
{ "mac", "MAC address", CONFIG_MAC, "", 0 },
{ "midi_out", "MIDI output", CONFIG_MIDI_OUT, "", 0 },
{ "midi_in", "MIDI input", CONFIG_MIDI_IN, "", 0 },
{ "", "", CONFIG_END }

};

const device_t foo_device = {
/* ... */
.config = foo_config

};

2.16. API 59

86Box

Table 2: device_config_t
Member Description
name Internal name for this option, used to identify it in the

emulated machine’s configuration file.
description Description for this option, displayed in the user inter-

face.
type One of the following option types:

• CONFIG_SELECTION: combobox containing a list
of values specified by the selection member;

• CONFIG_HEX16: combobox containing a list of
16-bit hexadecimal values (useful for ISA I/O
ports) specified by the selection member;

• CONFIG_HEX20: combobox containing a list of
20-bit hexadecimal values (useful for ISA mem-
ory addresses) specified by the selection mem-
ber;

• CONFIG_STRING: arbitrary text string entered by
the user, currently not visible nor configurable
in the user interface;

• CONFIG_FNAME: arbitrary file path entered by the
user directly or through a file selector button;

• CONFIG_BINARY: checkbox;
• CONFIG_INT: arbitrary integer number, currently

not visible nor configurable in the user interface;
• CONFIG_SPINNER: arbitrary integer number en-

tered by the user directly or through up/down ar-
rows, within a range specified by the spinner
member;

• CONFIG_MAC: last 3 octets of a MAC address, cur-
rently not visible nor configurable in the user in-
terface;

• CONFIG_MIDI_OUT: combobox containing a list
of system MIDI output devices;

• CONFIG_MIDI_IN: combobox containing a list of
system MIDI input devices;

• CONFIG_END: mandatory terminator to indicate
the end of the option list.

default_string Default string value for a CONFIG_STRING option. Can
be "" if not applicable.

default_int Default integer value for a CONFIG_HEX16,
CONFIG_HEX20, CONFIG_BINARY, CONFIG_INT or
CONFIG_SPINNER option. Can be 0 if not applicable.

file_filter File type filter for a CONFIG_FNAME option. Can be
"" if not applicable. Must be specified in Windows
description|mask|description|mask... format,
for example:
"Raw image (*.img)|*.img|Virtual Hard Disk
(*.vhd)|*.vhd"

spinner device_config_spinner_t sub-structure con-
taining the minimum/maximum/step values for a
CONFIG_SPINNER option. Can be { 0 } if not applica-
ble.

Mem-
ber

Description

min Minimum selectable value.
max Maximum selectable value.
step Units to be incremented/decremented with the

arrow buttons. Note that the user can still type
in arbitrary numbers that are within min and
max but not aligned to step.

selection Array of device_config_selection_t
sub-structures containing the choices for
a CONFIG_SELECTION, CONFIG_HEX16 or
CONFIG_HEX20 option. Can be { 0 } if not ap-
plicable. Must be terminated with an object with a
description of "".

Mem-
ber

Description

descriptionDescription for this choice, displayed in the
user interface.

value Integer value corresponding to this choice,
used to identify it in the emulated machine’s
configuration file.

60 Chapter 2. Contents

86Box

Configured option values can be read from within the device’s init callback with the device_get_config_* func-
tions. These functions automatically operate in the context of the device currently being initialized.

Note: device_get_config_* functions should never be called outside of a device’s init callback. You are respon-
sible for reading the options’ configured values in the init callback and storing them in the device’s state structure if
necessary.

Table 3: device_get_config_string
Parame-
ter

Description

name The option’s name. Accepted option types are CONFIG_STRING and CONFIG_FNAME.
Return
value

The option’s configured string value, or its default_string if no value is present. Note that a const
char * is returned.

Table 4: device_get_config_int / device_get_config_hex16 /
device_get_config_hex20

Parameter Description
name The option’s name. Accepted option types are:

• device_get_config_int:
CONFIG_SELECTION, CONFIG_BINARY,
CONFIG_INT, CONFIG_SPINNER,
CONFIG_MIDI_OUT, CONFIG_MIDI_IN

• device_get_config_hex16: CONFIG_HEX16
• device_get_config_hex20: CONFIG_HEX20

Return value The option’s configured integer value (CONFIG_BINARY
returns 1 if checked or 0 otherwise), or its default_int
if no value is present.

Table 5: device_get_config_int_ex / device_get_config_mac
Parameter Description
name The option’s name. Accepted option types are:

• device_get_config_int_ex:
CONFIG_SELECTION, CONFIG_BINARY,
CONFIG_INT, CONFIG_SPINNER,
CONFIG_MIDI_OUT, CONFIG_MIDI_IN

• device_get_config_mac: CONFIG_MAC

dflt_int The default value to return if no configured value is
present.

Return value The option’s configured integer value (CONFIG_BINARY
returns 1 if checked or 0 otherwise), or dflt_int if no
value is present.

2.16. API 61

86Box

2.16.2 Timers

Timers allow devices to perform tasks after a set period. This period is automatically scaled to match the emulation
speed, which helps 86Box stay relatively accurate, unlike other emulators and virtualizers which may operate timers
in real time independently of speed. Unless otherwise stated, all structures, functions and constants in this page are
provided by 86box/timer.h.

Note: Timers are processed after each CPU instruction in interpreter mode, or each recompiled code block in dy-
namic recompiler mode (unless an instruction requests a Time Stamp Counter (TSC) update). In both cases, timer
accuracy should be in the single-digit microsecond range at a minimum, which is good enough for most time-sensitive
applications such as 48 KHz audio.

Adding

Timers can be added with the timer_add function. The best place for adding a timer is in a device’s init callback,
storing the pc_timer_t object in the state structure.

Code example: adding a timer

#include <86box/device.h>
#include <86box/timer.h>

typedef struct {
pc_timer_t countdown_timer;

} foo_t;

/* Called once the timer period is reached. */
static void
foo_countdown_timer(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Do whatever you want. */
}

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
foo_t *dev = /* ... */

/* Add timer. */
timer_add(&dev->countdown_timer, foo_countdown_timer, foo, 0);

}

const foo1234_device = {
/* ... */
.init = foo_init,
/* ... */

};

62 Chapter 2. Contents

86Box

Table 6: timer_add
Parameter Description
timer Pointer to a pc_timer_t object stored somewhere, usu-

ally in a device’s state structure.
callback Function called every time the timer’s period is reached.

Takes the form of:
void callback(void *priv)

• priv: opaque pointer (see priv below).

priv Opaque pointer passed to the callback above. Usually
a pointer to a device’s state structure.

start_timer Part of the legacy API , should always be 0.

Triggering

The timer_on_auto function can be used to start (with the provided microsecond period) or stop a timer. It can also
be called from a timer callback to restart the timer:

Code example: starting, restarting and stopping a timer

#include <86box/timer.h>

typedef struct {
uint8_t regs[256];
pc_timer_t countdown_timer; /* don't forget to timer_add on init, per the example␣

→˓above */
} foo_t;

static void
foo_countdown_timer(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Restart timer automatically if the relevant
bit (see register description below) is set. */

if (dev->regs[0x80] & 0x02)
timer_on_auto(&dev->countdown_timer, 100.0);

}

/* Our device handles I/O port register 0x__80 like this:
- Bit 0 (0x01) set: start 100-microsecond countdown timer;
- Bit 0 (0x01) clear: stop countdown timer;
- Bit 1 (0x02) set: automatically restart timer. */

static void
foo_outb(uint16_t addr, uint8_t val, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Handle writes to register 0x80. */
if ((addr & 0xff) == 0x80) {

(continues on next page)

2.16. API 63

86Box

(continued from previous page)

dev->regs[0x80] = val;
if (val & 0x01) /* bit 0 set */

timer_on_auto(&dev->countdown_timer, 100.0);
else /* bit 0 clear */

timer_on_auto(&dev->countdown_timer, 0.0);
}

}

Table 7: timer_on_auto
Pa-
rame-
ter

Description

timer Pointer to the timer’s pc_timer_t object.
period Period after which the timer callback is called, in microseconds (1/1,000,000th of a second or 1/1,000th

of a millisecond) as a double. A period of 0.0 stops the timer if it’s active.

Legacy API

Existing devices may use the timer_set_delay_u64 and timer_advance_u64 functions, which are considered
legacy and will not be documented here for simplicity. These functions used an internal 64-bit period unit, which
had to be obtained by multiplying the microsecond value by the TIMER_USEC constant, and updated by the device’s
speed_changed callback. The new timer_on_auto function is much simpler, requiring no constant multiplication
or updates.

2.16.3 Threads

Compute-intensive tasks can be offloaded from the main emulation flow with threads. Unless otherwise stated, all
structures, functions and constants in this page are provided by 86box/plat.h.

Warning: 86Box API functions (excluding those in this page) are generally not thread-safe and must be called
from the main emulation thread. Thread-unsafe actions (such as raising an interrupt) can be performed by the
callback of a free-running timer which looks for data written to the device’s state structure by a thread, as timers
run on the main emulation thread.

Note: The contents of thread_t and other structures used by thread_* functions are platform-specific; therefore,
pointers to those structures should be treated as opaque pointers.

64 Chapter 2. Contents

86Box

Starting

Threads can be started with the thread_create function. Additionally, the thread_wait function can be used to
wait for a thread’s function to return.

Table 8: thread_create
Parameter Description
thread_func Function to run in the thread. Takes the form of:

void thread_func(void *priv)
• priv: opaque pointer (see priv below).

priv Opaque pointer passed to the thread_func above. Usu-
ally a pointer to a device’s state structure.

Return value thread_t pointer representing the newly-created
thread. That pointer will become invalid once the
thread’s function returns.

Table 9: thread_wait
Parameter Description
arg thread_t pointer representing the thread to wait for.
Return value • 0 on success;

• Any other value on failure.

Events

Events allow for synchronization between threads. An event, represented by an event_t pointer returned by the
thread_create_event function, can be set (thread_set_event function) or reset (thread_reset_event func-
tion), and a thread can wait for an event to be set with the thread_wait_event function. Events that are no longer to
be used should be deallocated with the thread_destroy_event function.

Table 10: thread_create_event
Parameter Description
Return value event_t pointer representing the newly-created event.

Table 11: thread_set_event / thread_reset_event /
thread_destroy_event

Param-
eter

Description

arg event_t pointer representing the event to set (thread_set_event), reset (thread_reset_event) or
deallocate (thread_destroy_event).

2.16. API 65

86Box

Table 12: thread_wait_event
Parameter Description
arg event_t pointer representing the event to wait for.
timeout Maximum amount of time in milliseconds (not mi-

croseconds, unlike timers) to spend waiting for this event
to be set. If set to -1, this function will not return until
the event is set.

Return value • 0 on success;
• Any other value if timeout was reached or the

wait otherwise failed.

Note: A thread_wait_event call does not reset the event once it is set; the event must be reset manually with
thread_reset_event. thread_wait_event returns immediately if the event is already set.

Mutexes

Mutexes, also known as locks, can control access to a shared resource, ensuring no concurrent modifications or other
issues arise from multiple threads attempting to use the same resource at the same time. A mutex, represented by
a mutex_t pointer returned by the thread_create_mutex function, can be locked with the thread_wait_mutex
function (which waits until the mutex is released) and released with the thread_release_mutex function. Addition-
ally, the status of a mutex can be independently checked with the thread_test_mutex function. Mutexes that are no
longer to be used should be deallocated with the thread_close_mutex function.

Table 13: thread_create_mutex
Parameter Description
Return value mutex_t pointer representing the newly-created mutex.

Table 14: thread_wait_mutex / thread_release_mutex /
thread_close_mutex

Pa-
ram-
eter

Description

arg mutex_t pointer representing the mutex to lock (thread_wait_mutex), release
(thread_release_mutex) or deallocate (thread_close_mutex). If this mutex is locked,
thread_wait_mutex will not return until the mutex is released by another thread.

Table 15: thread_test_mutex
Parameter Description
arg mutex_t pointer representing the mutex to check.
Return value

• 0 if this mutex is locked;
• Any other value if the mutex is released.

66 Chapter 2. Contents

https://en.wikipedia.org/wiki/Mutual_exclusion

86Box

2.16.4 Port I/O

86Box handles the x86 port I/O space through I/O handlers. These handlers can be added with the io_sethandler
function and removed with the io_removehandler function, both provided by 86box/io.h.

Table 16: io_sethandler / io_removehandler
Parameter Description
base First I/O port (0x0000-0xffff) covered by this handler.
size Amount of I/O ports (1-65536) covered by this handler,

starting at base.
inb I/O read operation callback functions. Can be NULL.

Each callback takes the form of:
TYPE callback(uint16_t addr, void *priv)

• TYPE: operation width: uint8_t for inb,
uint16_t for inw, uint32_t for inl;

• addr: exact I/O port being read;
• priv: opaque pointer (see priv below);
• Return value: 8- (inb), 16- (inw) or 32-bit (inl)

value read from this port.

inw

inl

outb I/O write operation callback functions. Can be NULL.
Each callback takes the form of:
void callback(uint16_t addr, TYPE val,
void *priv)

• addr: exact I/O port being written;
• TYPE: operation width: uint8_t for outb,
uint16_t for outw, uint32_t for outl;

• val: 8- (outb), 16- (outw) or 32-bit (outl) value
being written to this port;

• priv: opaque pointer (see priv below).

outw

outl

priv Opaque pointer passed to this handler’s read/write op-
eration callbacks. Usually a pointer to a device’s state
structure.

I/O handlers can be added or removed at any time, although io_removehandler must be called with the exact same
parameters that io_sethandlerwas originally called with. For non-Plug and Play devices, you might want to add han-
dlers in the init callback; for ISA Plug and Play devices, you’d add and/or remove handlers on the config_changed
callback; for PCI devices, you’d do the same whenever the Command register or Base Address (BAR) registers are
written to; and so on.

Note: There is no need to call io_removehandler on the device’s close callback, since a hard reset already removes
all I/O handlers.

2.16. API 67

86Box

Callback fallbacks

When an I/O handler receives an operation with a width for which it has no callback, the operation will automatically
fall back to a lower width for which there is a callback. For example, if an inl operation falls on a handler which
has no inl callback, 86Box will break the operation down to inw or inb callbacks on successive port numbers, then
combine their return values:

• inl callback present:

uint32_t val = inl(port);

• inl callback not present, but inw callback present:

uint32_t val = inw(port);
val |= (inw(port + 2) << 16);

• inl and inw callbacks not present, but inb callback present:

uint32_t val = inb(port);
val |= (inb(port + 1) << 8);
val |= (inb(port + 2) << 16);
val |= (inb(port + 3) << 24);

• inl, inw and inb callbacks not present:

uint32_t val = 0xffffffff; /* don't care */

The same rule applies to write callbacks:

• outl callback present:

uint32_t val = /* ... */;
outl(port, val);

• outl callback not present, but outw callback present:

uint32_t val = /* ... */;
outw(port, val & 0xffff);
outw(port + 2, (val >> 16) & 0xffff);

• outl and outw callbacks not present, but outb callback present:

uint32_t val = /* ... */;
outb(port, val & 0xff);
outb(port + 1, (val >> 8) & 0xff);
outb(port + 2, (val >> 16) & 0xff);
outb(port + 3, (val >> 24) & 0xff);

• outl, outw and outb callbacks not present:

Don’t care, no operation performed.

Note: Each broken-down operation triggers the I/O handlers for its respective port number, no matter which handlers
are responsible for the starting port number. A handler will never receive callbacks for ports outside its base and size
boundaries.

68 Chapter 2. Contents

86Box

This feature’s main use cases are devices which store registers that are 8-bit wide but may be accessed with 16- or
32-bit operations:

Code example: inb handler for reading 8-bit registers

typedef struct {
uint8_t regs[256];

} foo_t;

static uint8_t
foo_io_inb(uint16_t addr, void *priv)
{

foo_t *dev = (foo_t *) priv;
return dev->regs[addr & 0xff]; /* register index = I/O port's least significant byte␣

→˓*/
}

/* No foo_io_inw, so a 16-bit read will read two 8-bit registers in succession.
No foo_io_inl, so a 32-bit read will read four 8-bit registers in succession. */

Multiple I/O handlers

Any given I/O port can have an unlimited amount of I/O handlers, such that:

• when a read operation occurs, all read callbacks will be called, and their return values will be logically ANDed
together;

• when a write operation occurs, all write callbacks will be called with the same written value.

Read callbacks can effectively return “don’t care” (without interfering with other handlers) by returning a value with
all bits set: 0xff for inb, 0xffff for inw or 0xffffffff for inl.

Note: The same callback fallback rules specified above also apply with multiple handlers. Handlers without callbacks
for the operation’s type and (same or lower) width are automatically skipped.

I/O traps

A second type of I/O handler, I/O traps allow a device (usually System Management Mode on chipsets or legacy
compatibility mechanisms on PCI sound cards) to act upon a read/write operation to an I/O port operation without
affecting its result.

Code example: I/O trap on ports 0x220-0x22f

typedef struct {
void *trap_220;

} foo_t;

static void
foo_trap_220(int size, uint16_t addr, uint8_t write, uint8_t val, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

(continues on next page)

2.16. API 69

86Box

(continued from previous page)

/* Do whatever you want. */
pclog("Foo: Trapped I/O %s to port %04X, size %d\n",

write ? "write" : "read", addr, size);
if (write)
pclog("Foo: Written value: %02X\n", val);

}

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
foo_t *dev = /* ... */

/* Add I/O trap. */
dev->trap_220 = io_trap_add(foo_trap_220, dev);

/* Map I/O trap to 16 ports starting at 0x220. */
io_trap_remap(dev->trap_220, 1, 0x220, 16);

return dev;
}

static void
foo_close(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Remove I/O trap before deallocating the device state structure. */
io_trap_remove(dev->trap_220);
free(dev);

}

const device_t foo4321_device = {
/* ... */
.init = foo_init,
.close = foo_close,
/* ... */

};

70 Chapter 2. Contents

86Box

Table 17: io_trap_add
Parameter Description
func Function called whenever an I/O operation of any type or

size is performed to the trap’s I/O address range. Takes
the form of:
void func(int size, uint16_t addr, uint8_t
write, uint8_t val, void *priv)

• size: I/O operation width: 1, 2 or 4;
• addr: I/O address the operation is being per-

formed on;
• write: 0 if this operation is a read, or 1 if it’s a

write;
• val: value being written if this operation is a

write;
• priv: opaque pointer (see priv below).

priv Opaque pointer passed to the func callback above. Usu-
ally a pointer to a device’s state structure.

Return value Opaque (void) pointer representing the newly-created
I/O trap.

Table 18: io_trap_remap
Parameter Description
trap Opaque pointer representing the I/O trap to remap.
enable

• 1 to enable this trap;
• 0 to disable it.

addr First I/O port (0x0000-0xffff) covered by this trap.
size Amount of I/O ports (1-65536) covered by this trap.

2.16.5 DMA

86Box offers two mechanisms for Direct Memory Access: 8237 DMA for ISA devices and direct memory read/write
for PCI devices.

2.16. API 71

86Box

8237 DMA

86box/dma.h provides the dma_channel_read and dma_channel_write functions to read or write (respectively) a
value from or to an 8237 DMA channel.

Table 19: dma_channel_read
Pa-
ram-
e-
ter

Description

channelDMA channel number: 0-3 for 8-bit channels or 5-7 for 16-bit channels.
Re-
turn
value

8- (channels 0-3) or 16-bit (channels 5-7) value read from the given DMA channel, or DMA_NODATA if no
data was read.
May include a DMA_OVER bit flag (located above the most significant data bit so as to not interfere with the
data) indicating that this was the last byte or word transferred, after which the channel is auto-initialized or
masked depending on its configuration.

Table 20: dma_channel_write
Parameter Description
channel DMA channel number: 0-3 for 8-bit channels or 5-7 for

16-bit channels.
val 8- (channels 0-3) or 16-bit (channels 5-7) value to write

to the given DMA channel.
Return value • 0 on success;

• DMA_NODATA if no data was actually written;
• DMA_OVER if this was the last byte or word trans-

ferred, after which the channel is auto-initialized
or masked depending on its configuration.

Direct memory read/write

86box/mem.h provides the mem_read*_phys and mem_write*_phys functions, which read or write physical memory
directly. These are useful for PCI devices, which perform DMA on their own.

Table 21: mem_readb_phys / mem_readw_phys / mem_readl_phys
Parame-
ter

Description

addr 32-bit memory address to read.
Return
value

8- (mem_readb_phys), 16- (mem_readw_phys) or 32-bit (mem_readl_phys) value read from the
given memory address.

Table 22: mem_writeb_phys / mem_writew_phys / mem_writel_phys
Parame-
ter

Description

addr 32-bit memory address to write.
val 8- (mem_readb_phys), 16- (mem_readw_phys) or 32-bit (mem_readl_phys) value to write to the

given memory address.

72 Chapter 2. Contents

86Box

2.16.6 PCI

PCI devices are more complex than ISA devices; they are individually addressable through a device number, and
contain a configuration space for configuring several aspects of the device.

Adding a device

PCI devices can be added with the pci_add_card function in the device’s init callback. A PCI slot is automatically
selected for the device according to the add_type; if the emulated machine runs out of slots, a DEC 21150 PCI-PCI
bridge is automatically deployed to add 9 more slots, and new devices are placed in the secondary PCI bus under it.

Code example: adding a PCI device

#include <86box/device.h>
#include <86box/pci.h>

typedef struct {
int slot;
uint8_t pci_regs[256]; /* 256*8-bit configuration register array */

} foo_t;

static uint8_t
foo_pci_read(int func, int addr, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Ignore unknown functions. */
if (func > 0)

return 0xff;

/* Read configuration space register. */
return dev->pci_regs[addr];

}

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Ignore unknown functions. */
if (func > 0)

return;

/* Write configuration space register. */
dev->pci_regs[addr] = val;

}

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
(continues on next page)

2.16. API 73

86Box

(continued from previous page)

foo_t *dev = /* ... */

/* Add PCI device. */
pci_add_card(PCI_ADD_NORMAL, foo_pci_read, foo_pci_write, dev, &dev->slot);

return dev;
}

const device_t foo4321_device = {
.name = "Foo-4321",
.internal_name = "foo4321",
.flags = DEVICE_PCI,
.local = 4321,
.init = foo_init,
/* ... */

};

Table 23: pci_add_card
Parameter Description
add_type PCI slot type to add this card to.
read Configuration space register read callback. Takes the

form of:
uint8_t read(int func, int addr, void
*priv)

• func: PCI function number;
• addr: configuration space register index being

read;
• priv: opaque pointer (see priv below);
• Return value: 8-bit value read from this register

index.

write Configuration space register write callback. Takes the
form of:
void write(int func, int addr, uint8_t
val, void *priv)

• func: PCI function number;
• addr: configuration space register index being

written;
• val: 8-bit value being written from this register

index.
• priv: opaque pointer (see priv below);

priv Opaque pointer passed to this device’s configuration
space register read/write callbacks. Usually a pointer to
a device’s state structure.

slot Pointer to an int in the state structure, which will store
a value representing the newly-added device. That value
is subject to change if the PCI slot manager sees fit to
move the device after it has been added.

74 Chapter 2. Contents

86Box

Slot types

A machine may declare special PCI slots for specific purposes, such as on-board PCI devices which don’t correspond
to a physical slot. The add_type parameter to pci_add_card determines which kind of slot the device should be
placed in:

• PCI_ADD_NORMAL: normal 32-bit PCI slot;

• PCI_ADD_AGP: AGP slot (AGP is a superset of PCI);

• PCI_ADD_VIDEO: on-board video controller;

• PCI_ADD_HANGUL: on-board supplementary language-specific video controller;

• PCI_ADD_IDE: on-board IDE controller;

• PCI_ADD_SCSI: on-board SCSI controller;

• PCI_ADD_SOUND: on-board sound controller;

• PCI_ADD_MODEM: on-board modem controller;

• PCI_ADD_NETWORK: on-board network controller;

• PCI_ADD_UART: on-board serial port controller;

• PCI_ADD_USB: on-board USB controller;

• PCI_ADD_NORTHBRIDGE, PCI_ADD_AGPBRIDGE, PCI_ADD_SOUTHBRIDGE: reserved for the chipset.

A device available both as a discrete card and as an on-board device should have different device_t objects with
unique local values to set both variants apart.

Code example: device available as both discrete and on-board

#include <86box/device.h>
#include <86box/pci.h>

#define FOO_ONBOARD 0x80000000 /* most significant bit set = on-board */

typedef struct {
int slot;

} foo_t;

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
foo_t *dev = /* ... */

/* Add PCI device. The normal variant goes in any normal slot,
and the on-board variant goes in the on-board SCSI "slot". */

pci_add_card((info->local & FOO_ONBOARD) ? PCI_ADD_SCSI : PCI_ADD_NORMAL,
foo_pci_read, foo_pci_write, dev, &dev->slot);

return dev;
}

const device_t foo4321_device = {
.name = "Foo-4321",

(continues on next page)

2.16. API 75

86Box

(continued from previous page)

.internal_name = "foo4321",

.flags = DEVICE_PCI,

.local = 4321, /* on-board bit not set */

.init = foo_init,
/* ... */

};

const device_t foo4321_onboard_device = {
.name = "Foo-4321 (On-Board)",
.internal_name = "foo4321_onboard",
.flags = DEVICE_PCI,
.local = 4321 | FOO_ONBOARD, /* on-board bit set */
.init = foo_init,
/* ... */

};

Configuration space

The PCI configuration space is split into a standard register set from 0x00 through 0x3f, and device-specific registers
from 0x40 through 0xff. Not all standard registers are present or writable (partially or fully) on all devices; consult the
documentation for the device you’re trying to implement to determine which registers and bits are present or writable.

Note: The documentation for some devices may treat configuration space registers as 16- or 32-bit-wide. Since 86Box
works with 8-bit-wide registers, make sure to translate all wider register offsets and bit numbers into individual bytes
(in little endian / least significant byte first).

Important: Aside from the configuration space, devices will very often have a different set of registers in I/O or
memory space; from now on, “registers” will refer to configuration space registers.

The most important registers in the standard set are:

76 Chapter 2. Contents

https://wiki.osdev.org/PCI#PCI_Device_Structure

86Box

Offsets Register Description
0x00 - 0x01 Vendor ID Unique IDs assigned to the device’s

vendor (2 bytes) and the device itself
(2 more bytes). The PCI ID Repos-
itory is a comprehensive repository
of many (but not all) known PCI IDs.

0x02 - 0x03 Device ID

0x04 - 0x05 Command Control several core aspects of the
PCI device:

• I/O Space (bit 0 or 0x0001)
should enable all I/O base ad-
dress registers if set, or dis-
able them if cleared;

• Memory Space (bit 1 or
0x0002) should enable all
memory base address regis-
ters if set, or disable them if
cleared;

• Interrupt Disable (bit 10 or
0x0400) should prevent the
device from triggering inter-
rupts if set.

0x0e Header type Usually 0 to indicate a normal PCI
header. Bit 7 (0x80) must be set if
this is the first function (function 0)
of a multi-function device.

0x10 - 0x27 Base Address Registers Sets the base address for each mem-
ory or I/O range provided by this de-
vice.

0x2c - 0x2d Subvendor ID Unique vendor (2 bytes) and device
(2 bytes) IDs sometimes assigned
to different implementations of the
same PCI device without having to
change the main Vendor and De-
vice IDs. Usually all 0 if the device
doesn’t call for such IDs.

0x2e - 0x2f Subsystem ID

0x30 - 0x33 Expansion ROM Base address and enable bit for the
device’s option ROM. Must be read-
only if the device does not provide
an option ROM.

0x3c Interrupt Line The PIC IRQ number assigned
to this device’s interrupt pin (see
Interrupt Pin below). While this
register’s contents should not be
used by the device, the register itself
must be writable if the device uses
interrupts.

0x3d Interrupt Pin Read-only value indicating the PCI
interrupt pin (INTx#) used by this
device:

• 0 if the device does not use in-
terrupts;

• PCI_INTA to indicate the
INTA# pin is used (most
devices use this);

• PCI_INTB to indicate the
INTB# pin is used;

• PCI_INTC to indicate the
INTC# pin is used;

• PCI_INTD to indicate the
INTD# pin is used.

2.16. API 77

https://pci-ids.ucw.cz
https://pci-ids.ucw.cz

86Box

Multi-function devices

PCI defines the concept of functions, which allow a physical device to contain up to 8 sub-devices (numbered from 0
to 7), each with their own configuration space, and their own resources controlled by Base Address Registers. Most
(but not all) multi-function PCI devices are chipset southbridges, which may implement a function for the PCI-ISA
bridge (and general configuration), another one for the IDE controller, one or more for USB and so on.

The func parameter passed to a device’s configuration space read/write callbacks provides the function number for
which the configuration space is being accessed. There are two main requirements for implementing multi-function
devices:

1. The first function (function 0) must have bit 7 (0x80) of the Header Type (0x0e) register set;

2. Unused functions must return 0xff on all configuration register reads and should ignore writes.

Code example: device with two functions

typedef struct {
int slot;
uint8_t pci_regs[2][256]; /* two 256*8-bit configuration register arrays,

one for each function */
} foo_t;

static uint8_t
foo_pci_read(int func, int addr, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Read configuration space register on the given function. */
switch (func) {

case 0: /* function 0 */
return dev->pci_regs[0][addr];

case 1: /* function 1 */
return dev->pci_regs[1][addr];

default: /* out of range */
return 0xff;

}
}

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Write configuration space register on the given function. */
switch (func) {

case 0: /* function 0 */
dev->pci_regs[0][addr] = val;
break;

case 1: /* function 1 */
(continues on next page)

78 Chapter 2. Contents

86Box

(continued from previous page)

dev->pci_regs[1][addr] = val;
break;

default: /* out of range */
break;

}
}

static void
foo_reset(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Reset PCI configuration registers. */
memset(dev->pci_regs[0], 0, sizeof(dev->pci_regs[0]));
memset(dev->pci_regs[1], 0, sizeof(dev->pci_regs[1]));

/* Write default vendor IDs, device IDs, etc. */

/* Flag this device as multi-function. */
dev->pci_regs[0][0x0e] = 0x80;

}

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
foo_t *dev = /* ... */

/* Add PCI device. No changes are required here for multi-function devices. */
pci_add_card(PCI_ADD_NORMAL, foo_pci_read, foo_pci_write, dev, &dev->slot);

/* Initialize PCI configuration registers. */
foo_reset(dev);

return dev;
}

const device_t foo4321_device = {
/* ... */
.init = foo_init,
.reset = foo_reset,
/* ... */

};

2.16. API 79

86Box

Base Address Registers

Each function may contain up to six Base Address Registers (BARs), which determine the base and size of a memory
or I/O resource provided by the device. The base address may be set by the BIOS and/or operating system during boot.
Each 4-byte BAR has two parts:

• The most significant bits store the resource’s base address, aligned to its size;

• The least significant bits are read-only flags related to the BAR:

– Bit 0 is the resource type: 0 for memory or 1 for I/O;

– Bits 1-3 on memory BARs are positioning flags not really relevant to the context of 86Box;

– Bit 1 on I/O BARs is reserved and must be 0.

The aforementioned base address alignment allows software (BIOSes and operating systems) to tell how big a BAR
resource is, by checking how many base address bits are writable. All bits ranging from the end of the flags to the start
of the base address must be read-only and always read 0; for example, on a memory BAR that is 4 KB (4096 bytes)
large, bits 31-12 must be writable (creating a 4096-byte alignment), bits 11-4 must read 0, and bits 3-0 must read the
BAR flags.

Note: The minimum BAR sizes are 4 KB for memory and 4 ports for I/O. While memory BARs can technically be as
small as 16 bytes, 86Box can only handle device memory in aligned 4 KB increments.

Table 24: Memory BAR (example: 4 KB large, starting at 0x10)
Byte0x13 0x12 0x11 0x10
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ValueBase memory address (4096-byte aligned) Always 0 0

Table 25: I/O BAR (example: 64 ports large, starting at 0x14)
Byte0x17 0x16 0x15 0x14
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ValueIgnored (0 recommended) Base I/O port (64-byte aligned) Always 0 1

Code example: memory and I/O BARs described above

#include <86box/io.h>
#include <86box/mem.h>

typedef struct {
uint8_t pci_regs[256];
uint16_t io_base;
mem_mapping_t mem_mapping;

} foo_t;

static void
foo_remap_mem(foo_t *dev)
{

if (dev->pci_regs[0x04] & 0x02) {
/* Memory Space bit set, apply the base address.
Least significant bits are masked off to maintain 4096-byte alignment.
We skip reading dev->pci_regs[0x10] as it contains nothing of interest. */

(continues on next page)

80 Chapter 2. Contents

86Box

(continued from previous page)

mem_mapping_set_addr(&dev->mem_mapping,
((dev->pci_regs[0x11] << 8) | (dev->pci_regs[0x12] << 16) |␣

→˓(dev->pci_regs[0x13] << 24)) & 0xfffff000,
4096);

} else {
/* Memory Space bit not set, disable the mapping. */
mem_mapping_set_addr(&dev->mem_mapping, 0, 0);

}
}

static void
foo_remap_io(foo_t *dev)
{

/* Remove existing I/O handler if present. */
if (dev->io_base)

io_removehandler(dev->io_base, 64,
foo_io_inb, foo_io_inw, foo_io_inl,
foo_io_outb, foo_io_outw, foo_io_outl, dev);

if (dev->pci_regs[0x04] & 0x01) {
/* I/O Space bit set, read the base address.
Least significant bits are masked off to maintain 64-byte alignment. */

dev->io_base = (dev->pci_regs[0x14] | (dev->pci_regs[0x15] << 8)) & 0xffc0;
} else {

/* I/O Space bit not set, don't do anything. */
dev->io_base = 0;

}

/* Add new I/O handler if required. */
if (dev->io_base)

io_sethandler(dev->io_base, 64,
foo_io_inb, foo_io_inw, foo_io_inl,
foo_io_outb, foo_io_outw, foo_io_outl, dev);

}

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Ignore unknown functions. */
if (func > 0)

return;

/* Write configuration space register. */
switch (addr) {

case 0x04:
/* Our device only supports the I/O and Memory Space bits of the Command␣

→˓register. */
dev->pci_regs[addr] = val & 0x03;

(continues on next page)

2.16. API 81

86Box

(continued from previous page)

/* Update memory and I/O spaces. */
foo_remap_mem(dev);
foo_remap_io(dev);
break;

case 0x10:
/* Least significant byte of the memory BAR is read-only. */
break;

case 0x11:
/* 2nd byte of the memory BAR is masked to maintain 4096-byte alignment. */
dev->pci_regs[addr] = val & 0xf0;

/* Update memory space. */
foo_remap_mem(dev);
break;

case 0x12: case 0x13:
/* 3rd and most significant bytes of the memory BAR are fully writable. */
dev->pci_regs[addr] = val;

/* Update memory space. */
foo_remap_mem(dev);
break;

case 0x14:
/* Least significant byte of the I/O BAR is masked to maintain 64-byte␣

→˓alignment, and
ORed with the default value's least significant bits so that the flags␣

→˓stay in place. */
dev->pci_regs[addr] = (val & 0xc0) | (dev->pci_regs[addr] & 0x03);

/* Update I/O space. */
foo_remap_io(dev);
break;

case 0x15:
/* Most significant byte of the I/O BAR is fully writable. */
dev->pci_regs[addr] = val;

/* Update I/O space. */
foo_remap_io(dev);
break;

case 0x16: case 0x17:
/* I/O BARs are only 2 bytes long, ignore the rest. */
break;

}
}

static void
foo_reset(void *priv)

(continues on next page)

82 Chapter 2. Contents

86Box

(continued from previous page)

{
/* Get the device state structure. */
foo_t *dev = (foo_t *) dev;

/* Reset PCI configuration registers. */
memset(dev->pci_regs, 0, sizeof(dev->pci_regs));

/* Write default vendor ID, device ID, etc. */

/* The BAR at 0x10-0x13 is a memory BAR. */
//dev->pci_regs[0x10] = 0x00; /* least significant bit already not set = memory */

/* The BAR at 0x14-0x17 is an I/O BAR. */
dev->pci_regs[0x14] = 0x01; /* least significant bit set = I/O */

/* Clear all BAR memory mappings and I/O handlers. */
//dev->pci_regs[0x04] = 0x00; /* Memory and I/O Space bits already cleared */
foo_remap_mem(dev);
foo_remap_io(dev);

}

/* Don't forget to add the PCI device on init first. */

const device_t foo4321_device = {
/* ... */
.reset = foo_reset,
/* ... */

};

Option ROM

A PCI function may have an option ROM, which behaves similarly to a memory BAR in that the ROM can be mapped
to any address in 32-bit memory space, aligned to its size. As with BARs, the BIOS and/or operating system takes care
of mapping; for example, a BIOS will map the primary PCI video card’s ROM to the legacy 0xc0000 address.

The main difference between this register and BARs is that the ROM can be enabled or disabled through bit 0 (0x01)
of this register. Both that bit and the Command (0x04) register’s Memory Space bit (bit 1 or 0x02) must be set for the
ROM to be accessible.

Note: The minimum size for an option ROM is 4 KB (see the note about 86Box memory limitations in the BAR
section), and the maximum size is 16 MB.

Table 26: Option ROM (example: 32 KB large)
Byte0x33 0x32 0x31 0x30
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ValueBase memory address (32768-byte aligned) Always 0

Code example: 32 KB option ROM

2.16. API 83

86Box

#include <86box/mem.h>
#include <86box/rom.h>

typedef struct {
uint8_t pci_regs[256];
rom_t rom;

} foo_t;

static void
foo_remap_rom(foo_t *dev)
{

if ((dev->pci_regs[0x30] & 0x01) && (dev->pci_regs[0x04] & 0x02)) {
/* Expansion ROM Enable and Memory Space bits set, apply the base address.
Least significant bits are masked off to maintain 32768-byte alignment.
We skip reading dev->pci_regs[0x30] as it contains nothing of interest. */

mem_mapping_set_addr(&dev->rom.mapping,
((dev->pci_regs[0x31] << 8) | (dev->pci_regs[0x32] << 16) |␣

→˓(dev->pci_regs[0x33] << 24)) & 0xffff8000,
4096);

} else {
/* Expansion ROM Enable and/or Memory Space bits not set, disable the mapping. */
mem_mapping_set_addr(&dev->rom.mapping, 0, 0);

}
}

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Ignore unknown functions. */
if (func > 0)

return;

/* Write configuration space register. */
switch (addr) {

case 0x04:
/* Our device only supports the Memory Space bit of the Command register. */
dev->pci_regs[addr] = val & 0x02;

/* Update ROM space. */
foo_remap_rom(dev);
break;

case 0x30:
/* Least significant byte of the ROM address is read-only, except for the␣

→˓enable bit. */
dev->pci_regs[addr] = val & 0x01;

/* Update ROM space. */
foo_remap_rom(dev);
break;

(continues on next page)

84 Chapter 2. Contents

86Box

(continued from previous page)

case 0x31:
/* 2nd byte of the ROM address is masked to maintain 32768-byte alignment. */
dev->pci_regs[addr] = val & 0x80;

/* Update ROM space. */
foo_remap_rom(dev);
break;

case 0x32: case 0x33:
/* 3rd and most significant bytes of the ROM address are fully writable. */
dev->pci_regs[addr] = val;

/* Update ROM space. */
foo_remap_rom(dev);
break;

}
}

static void
foo_reset(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) dev;

/* Reset PCI configuration registers. */
memset(dev->pci_regs, 0, sizeof(dev->pci_regs));

/* Write default vendor ID, device ID, etc. */

/* Clear ROM memory mapping. */
//dev->pci_regs[0x04] = 0x00; /* Memory Space bit already cleared */
//dev->pci_regs[0x30] = 0x00; /* Expansion ROM Enable bit already cleared */
foo_remap_rom(dev);

}

static int
foo4321_available()
{

/* This device can only be used if its ROM is present. */
return rom_present("roms/scsi/foo/foo4321.bin");

}

static void *
foo_init(const device_t *info)
{

/* Allocate the device state structure. */
foo_t *dev = /* ... */

/* Don't forget to add the PCI device first. */

/* Load 32 KB ROM... */

(continues on next page)

2.16. API 85

86Box

(continued from previous page)

rom_init(&dev->rom, "roms/scsi/foo/foo4321.bin", 0, 0x8000, 0x7fff, 0, MEM_MAPPING_
→˓EXTERNAL);

/* ...but don't map it right now. */
mem_mapping_disable(&dev->rom.mapping);

/* Initialize PCI configuration registers. */
foo_reset(dev);

return dev;
}

const device_t foo4321_device = {
/* ... */
.init = foo_init,
.reset = foo_reset,
{ .available = foo4321_available },
/* ... */

};

Interrupts

PCI devices can assert an interrupt on one of four interrupt pins called INTA#, INTB#, INTC# and INTD#. Each
function can only use one of these pins, specified by read-only register 0x3d. Each pin is connected to a system-wide
interrupt lane (most chipsets provide 4 lanes), which is then routed to a PIC or APIC IRQ at boot time by the BIOS
and/or operating system, through a process called steering. Different interrupt pins on different devices may share
the same lane, and more than one lane may share the same PIC IRQ (or APIC IRQ if the APIC has no dedicated PCI
interrupt inputs).

The diagram below exemplifies a system with interrupt steering performed by the chipset. Early PCI chipsets are not
capable of steering by themselves, instead requiring interrupt lanes to be manually routed to PIC IRQs using jumpers
and the BIOS to be configured accordingly. On machines with non-steering-capable chipsets, 86Box skips the jumpers
and uses the IRQs configured in the BIOS; this is done by snooping on the values the BIOS writes to register 0x3c.

An emulated PCI device can assert or de-assert an interrupt on any pin with the pci_set_irq and pci_clear_irq
functions respectively. The PCI subsystem transparently handles interrupt lane routing (using the per-machine PCI
slot table), sharing and steering. Once an interrupt is asserted, a device usually de-asserts it when an interrupt flag is
cleared or an interrupt mask flag is set in its configuration, I/O or memory register space.

Code example: PCI interrupts

#include <86box/pci.h>

typedef struct {
int slot;
uint8_t irq_state;
uint8_t pci_regs[256];

} foo_t;

static void
foo_pci_write(int func, int addr, uint8_t val, void *priv)
{

(continues on next page)

86 Chapter 2. Contents

86Box

Fig. 2: PCI interrupt topology example. IRQ 10 is shared by two interrupt lanes. The machine is free to route any
INTx# pin to any lane (sequentially or not), and free to route any lane to any available IRQ.

2.16. API 87

86Box

(continued from previous page)

/* Get the device state structure. */
foo_t *dev = (foo_t *) priv;

/* Ignore unknown functions. */
if (func > 0)

return;

/* The Interrupt Line register must be writable for 86Box to
know the IRQ to use on machines with non-steering chipsets. */

if (addr == 0x3c) {
dev->pci_regs[0x3c] = val;
return;

}

/* Example: PCI configuration register 0x40:
- Bit 0 (0x01) set: manually assert interrupt;
- Bit 0 (0x01) clear: de-assert interrupt. */

if (addr == 0x40) {
dev->pci_regs[0x40] = val;
if (val & 0x01)

pci_set_irq(dev->slot, PCI_INTA, &dev->irq_state);
else

pci_clear_irq(dev->slot, PCI_INTA, &dev->irq_state);
}

}

static void
foo_reset(void *priv)
{

/* Get the device state structure. */
foo_t *dev = (foo_t *) dev;

/* Reset PCI configuration registers. Clearing active
interrupts is left as an exercise to the reader. */

memset(dev->pci_regs, 0, sizeof(dev->pci_regs));

/* Write default vendor ID, device ID, etc. */

/* Our device uses the INTA# interrupt line. */
dev->pci_regs[0x3d] = PCI_INTA;

}

/* Don't forget to add the PCI device on init first. This example uses
the slot value, which is provided to pci_add_card as a pointer. */

const device_t foo4321_device = {
/* ... */
.reset = foo_reset,
/* ... */

};

88 Chapter 2. Contents

86Box

Table 27: pci_set_irq / pci_clear_irq
Pa-
rame-
ter

Description

slot Value representing this PCI device, stored in the int passed to pci_add_card.
pci_int Interrupt pin to assert (pci_set_irq) or de-assert (pci_clear_irq): PCI_INTA, PCI_INTB,

PCI_INTC or PCI_INTD.
irq_statePointer to an uint8_t in the state structure, which is used internally by the interrupt manager. The stored

value is opaque and should not be used or changed.

Motherboard interrupts

Some chipsets may provide steerable motherboard IRQ (MIRQ) lines for on-board devices to use. The amount
of available lines depends on the chipset, and the purposes for those lines depend on the machine. 86Box supports
up to 8 MIRQ lines, which can be asserted or de-asserted with the pci_set_mirq and pci_clear_mirq functions
respectively.

Table 28: pci_set_mirq / pci_clear_mirq
Pa-
rame-
ter

Description

mirq MIRQ line to assert (pci_set_mirq) or de-assert (pci_clear_mirq): PCI_MIRQ0 through
PCI_MIRQ7.

level 1 if this MIRQ should be level-triggered, 0 if it should be edge-triggered.
irq_statePointer to an uint8_t in the state structure, which is used internally by the interrupt manager. The stored

value is opaque and should not be used or changed.

2.17 File formats

86Box introduces new file formats for disk images and other purposes. These formats are documented on this section.

2.17.1 86F

A floppy disk surface image format which stores data in FM- or MFM-encoded transitions.

Preliminary specification for v2.20

All offsets are in hexadecimal. This specification is subject to change before its final release.

00000000: Magic 4 bytes ("86BF")
00000004: Minor version (0x14)
00000005: Major version (0x02)
00000006: Disk flags (16-bit)

Bit 0 Has surface description data (1 = yes, 0 = no)
This data indicates if the corresponding bit on the FM/MFM␣

→˓encoded surface
is a normal bit or a special bit (weak bit or hole, depending on␣

→˓the other bit): (continues on next page)

2.17. File formats 89

86Box

(continued from previous page)

0 = The corresponding FM/MFM encoded surface bit is␣
→˓normal

1 = The corresponding FM/MFM encoded surface bit is␣
→˓either a weak bit or a hole:

Corresponding FM/MFM encoded bit is 0:␣
→˓Hole (noise on read, not overwritable)

Corresponding FM/MFM encoded bit is 1:␣
→˓Weak bit (noise on read, overwritable)

Bits 2, 1 Hole (3 = ED + 2000 kbps, 2 = ED, 1 = HD, 0 = DD)
Bit 3 Sides (1 = 2 sides, 0 = 1 side)
Bit 4 Write protect (1 = yes, 0 = no)
Bit 5 Bitcell mode (1 = Extra bitcells count specified after

disk flags, 0 = No extra bitcells)
The maximum number of extra bitcells is 1024 (which
after decoding translates to 64 bytes)

Bit 6 Revolutions (0 = one revolution, 1 track has 16-bit number of␣
→˓revolutions)
00000008: Offsets of tracks

Note that thick-track (eg. 360k) disks will have (tracks * 2) tracks, with each␣
→˓pair of tracks

being identical to each other.
Each side of each track is stored as its own track, in order (so, track 0 side 0,

→˓ track 0 side 1,
track 1 side 0, track 1 side 0, etc.).
The table of the offsets of tracks is 2048 bytes long, each track offset is an␣

→˓unigned 32-bit
integer. An offset of 00000000 indicates the track is not present in the file.
As an example, an 86F representing a disk with 80 thin tracks and 2 sides per␣

→˓track, where all
the tracks are present in the file, would have the first 160 offsets filled in,␣

→˓same for a disk
with 40 thick tracks and 2 sides. Same with only 1 side but only the offsets at␣

→˓0000000, 0000008,
etc. (so every second offset) would be filled in.

Track offset + 00000000: Track flags (16-bit)
Bits 4, 3 Encoding

00 = FM
01 = MFM
10 = M2FM
11 = GCR

Bits 2, 1, 0 Bit rate, if encoding is MFM:
000 = 500 kbps
001 = 300 kbps
010 = 250 kbps
011 = 1000 kbps
101 = 2000 kbps
If encoding is FM, the bit rate is half that.

The RPM is determined from track length and data rate.
Track offset + 00000002: Total bit cells count (32-bit)
Track offset + 00000006: Bit cell where index hole is (32-bit)
Track offset + 0000000A: FM/MFM/M2FM/GCR-encoded data (track length bytes)

(continues on next page)

90 Chapter 2. Contents

86Box

(continued from previous page)

Track offset + 0000000A + track length: Surface description data if present (track␣
→˓length bytes)

If this is a multi-revolution 86F, then track offset + 00000000 has a 16-bit number of␣
→˓track revolutions,
and the track header + data appears for each revolution, while surface description data,␣
→˓if present,
can appear any number of times, but only once per encoding + bit rate combination.
This needs work to properly make surface data work with flexible multi-revolution␣
→˓support.

Track lengths:
The total bit cells count is always present.
The track is stored as (bit cells >> 8) bytes, with one extra bit cells if the␣

→˓number of bit cells
is not divisible by 8.

2.17.2 Extended HDI (HDX)

A derivative of the Japanese FDI disk image format, with a more compact header as well as support for images larger
than 4 GB.

Specification

All offsets are in hexadecimal. The [Translation] values are for future use.

00000000: Signature (59 54 44 44 20 A8 78 D7 / "YTDD " A8 78 D7)
00000008: Full size of the data in bytes (64-bit)
00000010: Sector size in bytes (32-bit)
00000014: Sectors per cylinder (32-bit)
00000018: Heads per cylinder (32-bit)
0000001C: Cylinders (32-bit)
00000020: [Translation] Sectors per cylinder (32-bit)
00000024: [Translation] Heads per cylinder (32-bit)
00000028: Raw data (size set in offset 00000008)

2.17. File formats 91

	Community
	Contents
	Getting started
	Frequently asked questions
	What is the difference between 86Box and applications like VirtualBox or Virtual PC?
	What is the difference between 86Box and QEMU?
	What is the difference between 86Box and PCem?
	My virtual machine does not run at 100% speed, what do I do?
	What is the top VM configuration my system will handle?
	Are you going to add emulation of the Pentium 3 and/or newer CPUs?

	ROM set
	Search path

	Menu bar
	Action
	View
	Media
	Tools
	Help

	Toolbar
	Pause/resume execution
	Hard reset
	ACPI shutdown
	Press Ctrl+Alt+Del/Ctrl+Alt+Esc
	Settings
	Status area

	Status bar
	Cassette deck
	PCjr cartridges
	Floppy drives
	CD-ROM drives
	ZIP and MO drives
	Hard disks
	Network
	Sound
	Additional information area
	Monitor sleep mode
	ISABugger
	POST card

	Settings
	Machine
	Machine type / Machine
	CPU type / Speed
	FPU
	Wait states
	PIT mode
	Memory
	Dynamic Recompiler
	Softfloat FPU
	Time synchronization

	Display
	Video
	Video #2
	Voodoo Graphics
	8514/A / XGA

	Input devices
	Mouse
	Joystick
	Joystick 1-4…

	Sound
	Sound card #1-#4
	MIDI Out Device
	MIDI In Device
	Standalone MPU-401
	Use FLOAT32 sound
	FM synth driver

	Network
	Network Card #1-#4
	Mode
	Interface
	Adapter
	VDE Socket

	Ports (COM & LPT)
	LPT1-4 Device
	Serial port 1-4
	Parallel port 1-4
	Serial port passthrough 1-4

	Storage controllers
	HD Controller
	FD Controller
	Tertiary / Quaternary IDE Controller
	SCSI
	Cassette

	Hard disks
	Hard disk list
	Speed profiles
	Adding a new disk
	Adding an existing disk
	Removing a disk

	Floppy & CD-ROM drives
	Floppy drives
	CD-ROM drives

	Other removable devices
	MO / ZIP drives

	Other peripherals
	ISA RTC
	ISA Memory Expansion
	ISABugger
	POST card

	Machine-specific notes
	80286
	Socket 7
	Socket 8
	Slot 1
	Slot 2
	Socket 370
	Miscellaneous
	Footnotes

	Keyboard
	Host systems
	Windows
	macOS
	Linux

	Special keys
	Olivetti
	Toshiba

	Disk images
	Hard disk images
	Hard disk size limits

	Floppy disk images
	Floppy disk detection

	MO / ZIP removable disk images
	CD-ROM / DVD-ROM optical disc images
	CD audio

	Cassette tape images
	PCjr cartridge images
	Creating and using disk images
	Editing and mounting on Windows
	Mounting on macOS
	Editing on Linux and macOS
	Creating floppy images
	Copying files to floppy images
	Mounting on Linux

	Tertiary and quaternary IDE
	System resources
	BIOS support
	Operating system support
	DOS and real mode
	Windows 95, 98 and Me
	Windows NT, 2000 and XP
	Windows Vista and 7
	Linux

	Networking
	Null Driver
	SLiRP
	PCap
	Private PCap network

	VDE
	Installing VDE tools
	Linux
	macOS

	Creating the virtual switch
	Configuring 86Box for VDE
	VDE switch status
	Other VDE features

	Advanced networking features
	MAC address
	SLiRP port forwarding

	ISABugger
	Background
	Registers
	Register reference

	Build guide
	Toolchain files
	Presets
	Obtaining the source code
	Prerequisites
	Obtaining the dependencies
	MSYS2
	Ubuntu, Debian
	Arch
	Fedora
	macOS (Homebrew)

	Building

	Advanced builds
	Variants
	Discontinued variants

	API
	Devices
	State structure
	Registration
	Availability
	Configuration

	Timers
	Adding
	Triggering
	Legacy API

	Threads
	Starting
	Events
	Mutexes

	Port I/O
	Callback fallbacks
	Multiple I/O handlers
	I/O traps

	DMA
	8237 DMA
	Direct memory read/write

	PCI
	Adding a device
	Slot types
	Configuration space
	Multi-function devices
	Base Address Registers
	Option ROM
	Interrupts
	Motherboard interrupts

	File formats
	86F
	Preliminary specification for v2.20

	Extended HDI (HDX)
	Specification

